$Id: ycombinator.html,v 1.6 2002/06/27 23:37:39 aamine Exp $ [ruby-list:35058] に刺激を受けて Y combinator を解読してみた。 こんなもん読むくらいなら以下の参考ページを読んだほうがいい。 参考にした (というかほとんどそのままな) ページ (英語) http://www.ececs.uc.edu/~franco/C511/html/Scheme/ycomb.html 動機 再帰関数は再帰するときに自分自身を名前で呼ぶのが普通である。 これをなんとかして名前を使わず、関数そのものを呼ぶように させたい。 求めかた まず単純な fact (階乗) を以下に示す。言語は Scheme である。 (define fact (lambda (n) (if (zero? n) 1 (* n (fact (- n
Haskell では、Y コンビネータが作れないと誤解している人がいるので、できることを示すと同時に、これまで学んだことをまとめてみます。 遅延評価を活かした Y コンビネータ 関数名を用いた再帰を使ってよいなら、Haskell では遅延評価のおかげで、Y コンビネータを定義である Y x = x (Y x) の通りに書けます。 y :: (a -> a) -> a y x = x (y x) Y コンビネータ用の階乗を定義してみましょう。 fact :: Num a => (a -> a) -> a -> a fact = \f n -> if n == 0 then 1 else n * f (n-1) 以下のように動きます。 y fact 4 → 24 でも、この階乗は Haskell っぽくないので、入り口で分岐するように書き直してみます。 fact :: Num a => (a
前回、おとうさんにもわかるYコンビネータ!(絵解き解説編) - よくわかりませんというエントリで、Yコンビネータ(不動点演算子)と再帰の絵解き解説をしました。 Yコンビネータ自身は、結局のところ再帰を産み出してくれるだけです。関数(正確にはλという単純な文字列変換ルール)だけで出来て、プログラミングに関するいろんな原理の研究を可能にするのが凄い訳です。その辺のさわりを、きしださんが解説されています。しかし、単なる再帰なら、実際のプログラミングではYコンビネータなんて使わなくても出来ます。 じゃあ、Yコンビネータとか不動点とかは、偉い学者さんとかが研究に使えばいいもので、普通のプログラマには何の意味もないモノなのでしょうか? というわけで、今回はポジティブに、Yコンビネータや不動点で出てくる考え方を、理論だけじゃなく、実際のプログラミングに応用する例を見てみましょう。 今回、プログラムの例を
まとめ: Y combinator は、 不動点演算子 (不動点コンビネータ) と呼ばれるもののひとつである。 ある高階関数 f に Y を適用した値 Yf は、関数 f の不動点となる。 不動点演算子を使うと、名前のない関数でも自分自身を再帰的に呼び出すことができる: Y = (λf. (λx. f (x x)) (λx. f (x x))) Y の改良版 = (λf. (λx. (λp. f((x x), p))) (λx. (λp. f((x x), p)))) これ以外にも、不動点演算子として Turingコンビネータ θ が知られている: θ = (λx. (λy. y ((x x) y))) (λx. (λy. y ((x x) y))) (追記) λ-式 (lambda expression) は、さしずめ『関数のヒモノ (干物)』のようなものである。 水 (=引数) をかけ
2006年04月16日13:53 カテゴリMath書評/画評/品評 TuringとChurchの狭間で The Emperor's New Mind Roger Penrose [邦訳:皇帝の新しい心] なんでひげぽんが反復がすぐにわからなかったかを憶測すると、「変数とは代入すべきもの」、という手続き型言語の呪縛が思い立つ。ひげぽんは別にがっかりする必要はない。hyukiさんさえそれに引っかかっていたんだから。 その証拠を、以下にお見せする。 [結]2005年8月 - www.textfile.org sub fix { my $G = shift; return $G->( sub { my $x = shift; return fix($G)->($x); } ); } これはPerlで実装した不動点関数で、全く問題なく動く。しかし、hyukiさんも知らぬ間に一つ「反則」を犯しているこ
Microsoft is holding an AI Agents Hackathon, and we want to see what you can build with Python! We'll have 20+ live streams showing you how to build AI agents with Python using popular agent frameworks and Microsoft technologies. Then, you can submit your project for a chance to win prizes, including a Best in Python prize!
まず無限個の変数が与えられているとする。変数は通常x, yなどど記述される。変数から出発し、次の操作を繰り返して得られるものをλ式と呼ぶ。 λ抽象 λ式Mと変数xから、式λx. Mを生成する操作。これは、変数xに引数を受け取り、値Mを返す関数を意図する。Mに含まれる変数xはこのλにより束縛されるという。ただし、すでに束縛されているものは除く。 関数適用 二つのλ式M, Nを並べて結合した式MNを作る操作。これは式Mが表す関数に引数としてNを与えることを意図する。 またλ抽象や関数適用の範囲を明確にするために括弧を用いる。 例: (λx. xx)(λx. xx),λf.(λx.(f (x x)) λx.(f (x x)))
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く