平素は株式会社ライブドアのサービスを ご利用いただきありがとうございます。 提言型ニュースサイト「BLOGOS」は、 2022年5月31日をもちまして、 サービスの提供を終了いたしました。 一部のオリジナル記事につきましては、 livedoorニュース内の 「BLOGOSの記事一覧」からご覧いただけます。 長らくご利用いただき、ありがとうございました。 サービス終了に関するお問い合わせは、 下記までお願いいたします。 お問い合わせ
「自分だけのキャラを作りたい」 AIで美少女を「無限生成」、若きオタクエンジニアの挑戦(1/4 ページ) 女の子の瞳、髪形、表情が変化し、何体ものキャラクターが生まれていく――Preferred Networksが深層学習を活用し、アニメキャラクターを自動生成するサービス「Crypko」(クリプコ)を提供している。開発したのは、中国出身の若きエンジニア。「自分の想像通りのキャラクターを形にできるサービスを作りたい」と意気込む2人に開発の舞台裏を聞いた。 女の子の瞳、髪形、表情が万華鏡のように目まぐるしく変化し、何体ものキャラクターが生まれていく――AI(人工知能)ベンチャーのPreferred Networks(PFN、東京都千代田区)が、アニメやゲームの制作会社向けにそんな技術の提供を始めた。深層学習(ディープラーニング)を活用してアニメキャラクターを自動生成するサービス「Crypko」
Raspberry Pi4へのディープラーニング環境セットアップに関して 最新のラズパイ4でのディープラーニングの開発環境構築に関して、以下記事でまとめています。今から、ラズパイ4で最速で環境構築したい方は、以下記事参照下さい。ラズパイ3にも対応しています(同じ要領でセットアップ可能です)。 これ以降は、古い情報が含まれていることご了承ください。 Raspberry PiとTensorFlowでディープラーニング 最近、人工知能とかディープラーニングに関して興味を持っていて、以下のような記事でまとめたりしました。 ただ、本やネットの記事を見ただけだと、あまり頭の良くない自分には全然ピンとこないというのが正直なところです。そこで、今までChainerという日本製のディープラーニングのフレームワークを使って色々実験してみたのですが、サンプルを動かすことはできても、それ以上のことが何もできなくて
という事を痛切に悟りました。無理・無茶です。2015に出たLSTMとかCNNの教科書的の段階ならば、自分みたいな人間でも頑張って青本読んでも何とか理解できました。でもそのレベルでは特に自然言語処理関係であまり実用的なモノは作れません。LSTMで言語モデル作って文章出力して「知性!(実際はワードサラダ)」とか言ってた牧歌的な時代はもうとうの昔に過ぎ去りました。数学的バックグラウンドが無いと最新論文見ても何がなんだかわかりません。論文を簡単に説明してくれているブログ記事を読んでも理解できなくなってきました。片手間では無理ですね。 理論を理解するのは諦めて、他の人の成果物(論文)を誰かがコード実装してくれてそれを使ってなんかやるっていう方向性に特化しないと全部中途半端になっちゃうでしょう。最低限CNNの畳み込み・フィルタとかDropoutとかそのレベルぐらいまでは理解しないと誰かが書いたコードす
ディープラーニング、DeepLearning,DEEP LEARNING! しょっちゅう人工知能とセットで情報が伝わってくるので、 「ああ、あれね?」って人も多いんじゃないでしょうか? (pythonつったらDeepLearningでしょ〜って人も多い気がします) しかし、実際に「ディープラーニングってなんなの?」 と聞かれたときに胸はって答えられますか? もちろん、答えれるyo! え、一応、TensorFlow(Chainer)で画像の識別できる・・し? えーと、あれだよあれ。碁を打つ奴。ビジネスが変わるよね〜 従来のニューラルネットにドロップアウトなどの新しい要素を追加して、それから・・・ と、上記のうちどれかの解答をしてしまった人におすすめのが、 発売されたばかりのこの本です。 初めてのディープラーニング --オープンソース"Caffe"による演習付き 作者: 武井宏将 出版社/メー
こんにちは、VASILYのバックエンドエンジニアの塩崎です。 iQONの中ではクローラーと検索サーバーを担当しています。 iQONのクローラーには提携ECサイトさんからクロールした商品を商品カテゴリー(Tシャツ、ワンピース、etc.)に自動的に分類する機能があり、商品タイトルや商品説明文などのテキスト情報を元に分類を行っています。 しかし、一部のカテゴリー(セーター・ニット帽)の商品はテキスト情報だけからでは精度の良い分類を行うことができません。 そのため、これらのカテゴリーの商品については画像を用いたカテゴリー分類を導入しました。 これらの機能を実現するために、当社のデータサイエンスチームとも協力を行い、ディープラーニングを用いたカテゴリー判定器を開発しました。 また、この機能は既存のクローラーの機能からの独立性が高いので、クローラーに組み込むときにはマイクロサービス化をして組み込みまし
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く