局所特徴量とは / SIFT, SURF 特徴量 このスライドが超わかりやすかったです。 画像認識の初歩、SIFT,SURF特徴量 from takaya imai で、SIFT (Scale-invariant feature transform)、SURF (Speed-Upped Robust Feature) というのは、拡大縮小・回転・照明変化に強いロバストな特徴量、としてよく知られているようです。 SURF の方が軽量で、その代わり認識精度は SIFT の方が良い、とのこと。 特徴量の用途 複数写真からのパノラマ写真合成 (上に載せたスライドより) AR のマーカー認識 下記画像はARのマーカー認識とは違いますが、そういう使い方ができそうだ、ということは汲んでいただけるかと。。 (http://docs.opencv.org/3.0-rc1/d7/dff/tutorial_fe