タグ

ブックマーク / qiita.com/ykshr (2)

  • FPGAでDeep Learningしてみる - Qiita

    はじめに XilinxがBNN-PYNQというプロジェクトを公開したことにより、FPGA初心者でも簡単にDeep LearningをFPGA実行することができるようになりました。早速ボードを購入してデモ実行まで試してみました。 事前説明 PYNQ Xilinxのオープンソースプロジェクトで、XilinxのZynqに実装したFPGAロジックを、Pythonから簡単に使えるようにするためのもののようです。 通常、Zynqでプログラムを実行する際は、CPUで実行するPS(Processing System)と、FPGAで実行するPL(Programmable Logic)に分かれています。Deep Learningでは、Deep Learningを利用するアプリケーションをPSに実装し、並列化による高速化が見込める畳み込み処理やニューラルネットワークの各層の計算処理などをPLに実装するイメージで

    FPGAでDeep Learningしてみる - Qiita
  • FPGAでDeep Learningしてみる - きゅうりを選果する - Qiita

    はじめに 先日、FPGAでDeep Learningしてみるという記事で、PYNQやBNN-PYNQについて書きました。前回の記事では、PYNQ-Z1 Boardという比較的安価なFPGAボードの紹介と、あらかじめ準備されたデモ(Cifar10)の実行までを行いました。そこで今回は、あらかじめ準備されたデモから少し発展して、きゅうりの選果を行ってみます。 事前説明 BNN-PYNQをカスタムするには 前回の記事にも書きましたが、Deep Learningは、大きく学習と推論で構成されます。BNN-PYNQでは、推論のみが実装されています(学習はCPU/GPUで実施する必要があります)。そのため、BNN-PYNQをカスタムするということは、学習にあわせて、推論のネットワーク構造やパラメーターを変更することになります。 前回のCifar10を例に取ると、BNN-PYNQでは、下記の流れでJup

    FPGAでDeep Learningしてみる - きゅうりを選果する - Qiita
  • 1