タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

Algorithmとalgorithmとrecommendationに関するYasSoのブックマーク (8)

  • Learning to Hash! 最新 Locality sensitive hashing 事情 - 武蔵野日記

    高速に類似度計算をしたい場合、典型的に使われるのは Locality sensitive hashing (LSH)という技術であり、元々距離が近いインスタンス同士はハッシュ値が近くなるようにハッシュ関数を作ることで高速に類似度を計算したりできるというお話なのだが、最近 Semantic hashing や Spectral hashing、また Kernelized LSH という手法が登場して盛り上がりつつあるところ、同じグループの人がもっといいのを出しました、ということらしい。ちなみに情報推薦とか画像検索とか大規模クラスタリングとか、いろいろな分野で高速な類似度計算の応用例がある。 そういうわけで、今日は manab-ki くんが Brian Kulis and Trevor Darrell. "Learning to Hash with Binary Reconstructive

    Learning to Hash! 最新 Locality sensitive hashing 事情 - 武蔵野日記
  • 相対好み評価について書き直してみた。 - シイサイドの日記(今年いっぱいで削除予定)

    前回との違い 1つのエントリーに情報をまとめ、新しく順位付け手法を追加。 前回のエントリーはこちら 相対好み評価とは 相対好み評価とは、その作品がどのくらい視聴者に好まれているかを、ユーザーが行った他の作品との比較評価データを元に数値化する評価方式。 比較評価とは、作品Aと作品Bを評価する時、「AがBより好み」と「BがAより好み」のどちらかで評価する事。 以下、数値化された評価を評価値と呼ぶ。 以下、評価を行うユーザーをレビュアーと呼ぶ。 評価値は何を意味するのか 作品Aが、作品Bより評価値がN点高い場合、作品AとBを比較評価した時、作品Aのほうが好みだと答えるレビュアーの割合がBのよりM%高いと推定される。のような事を表す。 例えるなら、ドラゴンボールの戦闘力を対数表記したもの。が近いかもしれない。 採点方式との違い レビュアーが0〜10点の間で投票を行い、その平均を評価値にする採点方式

    相対好み評価について書き直してみた。 - シイサイドの日記(今年いっぱいで削除予定)
  • レコメンデーションとエディットグラフ

    レコメンデーションとエディットグラフ:コーディングに役立つ! アルゴリズムの基(10)(1/4 ページ) プログラマたるものアルゴリズムとデータ構造は知っていて当然の知識です。しかし、教科書的な知識しか知らなくて、実践的なプログラミングに役立てることができるでしょうか(編集部) 実際のアプリケーションで使われるアルゴリズム これまで見てきたアルゴリズムは、実際のアプリケーション開発の際にそのまま使われることはあまりなく、プログラム言語やライブラリなどですでに機能が用意されているものが大半でした。 今回は最終回ということで、実際のアプリケーション開発でそのまま使えるものを紹介したいと思います。 レコメンデーション ECサイトで、「あなたにお勧めの商品」を表示していることがあります。いろいろなデータベースや行動履歴のデータから、その人ごとにお勧めの商品をはじき出して推薦する機能をレコメンデー

    レコメンデーションとエディットグラフ
  • 「確率モデルによるwebデータ解析法」8章メモ - <s>gnarl,</s>技術メモ”’<marquee><textarea>¥

    昔書いたやつを発掘してきた。また読み返す必要があるなー。 8章は商用アプリケーションの話、レコメンダシステムと顧客行動解析。 ここで扱うレコメンダシステムは、ユーザの行動履歴に基づきユーザに対してアイテムを推薦するようなもの。 興味深い問題として、欠損をすべて0と考えた場合、ユーザiがチェックしなかった項目jに関する行列V中の欠損地の扱いがある。これら欠損データは、必ずしも完全にランダムに欠損しているわけではなく、ユーザが好まない項目に対して「どちらかといえば選ばない」という負のバイアスが 影響していると思われる(Breese,J.S.,Heckerman,D. and Kadie,C. 1988 Empirical analysis of predictive algorithms for collaborative filtering.)。リコメンダシステムに関する多くの研究において、

    「確率モデルによるwebデータ解析法」8章メモ - <s>gnarl,</s>技術メモ”’<marquee><textarea>¥
  • How Not To Sort By Average Rating

    By Evan Miller February 6, 2009 (Changes) Translations: Dutch  Estonian  German  Russian  Ukrainian PROBLEM: You are a web programmer. You have users. Your users rate stuff on your site. You want to put the highest-rated stuff at the top and lowest-rated at the bottom. You need some sort of “score” to sort by. WRONG SOLUTION #1: Score = (Positive ratings) − (Negative ratings) Why it is wrong: Supp

    How Not To Sort By Average Rating
  • はてなブログ | 無料ブログを作成しよう

    台北市立動物園と迪化街めぐり 子連れ台湾#5 年越し台湾旅行5日目、レジャーや友人との事を楽しむ日です。前日の様子はこちら www.oukakreuz.com 台北市立動物園へ パンダ館 パンダが見られるレストラン 迪化街へ 林茂森茶行でお茶を購入 小花園で刺繍グッズを購入 黒武士特色老火鍋で夕 台北市立動物園へ 松…

    はてなブログ | 無料ブログを作成しよう
  • Kikker の学習の仕組みと Rocchio アルゴリズム - naoyaのはてなダイアリー

    先日のソーシャルブックマーク研究会では id:kanbayashi さんによる発表がありました。id:kanbayashi さんは Kikker や はてブまわりのひと などの開発をされている方です。最近情報検索理論に入門した自分にとっては、非常に面白い発表でした。 発表の中で Kikker の学習の仕組みについての解説もありました。Kikker は Cosine similarity で推薦するドキュメントを検索しているそうですが、ユーザーのクリックデータを使って、ユーザーごとに推薦対象を最適化するようにしているそうです。この学習は、ユーザーが見たページのベクトルを、そのユーザーの趣向ベクトルに足し込むことで実現している、とのことでした。 SBM研究会で発表した"私がチャレンジしたSBMデータマイニング"のスライド - Ryoの開発日記 Neo! 発表ではベクトルを加算することについて「

    Kikker の学習の仕組みと Rocchio アルゴリズム - naoyaのはてなダイアリー
  • 【第4回】レコメンデーションの虚実(4)〜ベイジアンは「Amazonを超えた」のか? (1/2) - ITmedia アンカーデスク

    レコメンデーションの虚実(4)~ベイジアンは「Amazonを超えた」のか?:ソーシャルメディア セカンドステージ(1/2 ページ) Amazonを超えるレコメンデーションエンジン 今年8月6日・13日号の『日経ビジネス』誌に、「王子とニート 若者を浪費する日社会」という特集が掲載された。この特集の中で紹介されていたのが、ライブドアのCTO(最高技術責任者)や代表取締役を経てゼロスタートコミュニケーションズを設立したzakiさんこと山崎徳之氏。この記事で、彼の登場する場面はなんとも凄い。次のような書き出しだ。 天才プログラマーの腕はさび付いていなかった。 「よし、とりあえずアマゾンは超えたかな」 東京・渋谷の小さなオフィスで、ゼロスタートコミュニケーションズ社長の山崎徳之はキーボードから手を離すと、小さく伸びをした。 この記事のことを聞いてみると、彼は苦笑しながらこう言った。「いやあ、さす

    【第4回】レコメンデーションの虚実(4)〜ベイジアンは「Amazonを超えた」のか? (1/2) - ITmedia アンカーデスク
    YasSo
    YasSo 2007/10/14
    協調フィルタリングだけじゃなくてベイズ理論も使って推薦。>id:delicious
  • 1