タグ

ブックマーク / www.riken.jp (15)

  • 理化学研究所

    理化学研究所は、日で唯一の自然科学の総合研究所として、物理学、工学、化学、計算科学、生物学、医科学などに及ぶ広い分野で研究を進めています。

    理化学研究所
  • 光量子コンピュータのための重要なピース完成

    光量子コンピュータをつくるためにどうしても必要なのに、理論のアイデア発表から20年以上、誰も成し得なかった「掛け算」。「私たち実験屋は理論屋の提案を見て、こんなのどうやったらできるんだ?と頭を悩ますのです」と、どこか嬉しそうに語る阪口 淳史 特別研究員が、この「掛け算」を可能にする光の量子状態の測定を成功させました。これで、必要な技術の準備が整い、いよいよ実際のマシンの製作が始まろうとしています。 「光」に秘められた可能性 量子コンピュータの計算能力はどのくらいすごいのだろうか。「問題の規模にもよりますし、誰も確かめた人はいませんが」と前置きしてから、「『富岳』のようなスーパーコンピュータで、宇宙が終わるまでの時間をかけてもできないほどの膨大な計算問題も、現実的な時間で計算できます」と阪口 特別研究員。 超伝導、光、イオントラップ、シリコン…。量子コンピュータにはさまざまな方式がある。20

    光量子コンピュータのための重要なピース完成
  • 国宝油滴天目茶碗の曜変(光彩)の秘密を探る

    理化学研究所(理研)光量子工学研究センター 先端光学素子開発チームの海老塚 昇 研究員と開拓研究部 石橋極微デバイス工学研究室の岡 隆之 専任研究員(研究当時)の研究チームは、国宝油滴天目(ゆてきてんもく)茶碗[1]の青紫色の光彩、いわゆる曜変(ようへん)の発色を油滴(油の滴に似た斑点)の反射と釉薬(ゆうやく、うわぐすり)の2次元回折格子[2]構造によって説明しました。 研究成果は油滴天目茶碗や曜変天目(ようへんてんもく)茶碗の鑑賞のために最適な照明を提案できる上、釉薬の配合や焼成(焼き締め、焼結)方法を解明する糸口になると期待されます。 曜変とは漆黒の釉薬が厚くかかった建盞(けんさん。中国の宋時代の10~13世紀に建窯(けんよう。中国福建省にあった名窯)において焼成された、鉄質黒釉(こくゆう)の天目茶碗)の内面に大小さまざまな斑点が浮かび、その周りが暈(かさ)のように青く輝き、その

    国宝油滴天目茶碗の曜変(光彩)の秘密を探る
  • 募集特定寄附金 | 理化学研究所

    理研が予め研究テーマ・プロジェクト、国際会議の開催等の使途を特定して皆様からの支援を募集する寄附金です。 現在募集中の研究テーマ・プロジェクトは、次の通りです。 クラウドファンディング(READYFOR) 次世代器官再生医療に向けた基礎・応用化研究支援寄附金 SDGsへの貢献に向けた環境資源科学研究及び研究者育成支援に関する寄附金 若手AI研究者育成支援寄附金 READYFOR株式会社と提携したクラウドファンディングによる理研寄附金 2021年度よりREADYFOR株式会社との提携によるクラウドファンディングを開始しました。クラウドファンディングとは、プラットフォームであるウェブサイトを通じて、皆様に働きかけ、支援を募るものです。 量子コンピュータ開発のサポーター募集 このたび「量子コンピュータ開発のサポーター募集」を公開、寄附募集を開始いたしました。 量子コンピュータ研究センターは202

  • パートタイマー募集 医科学イノベーションハブ推進プログラム (MIH-1906) | 理化学研究所

    研究室の概要 医科学イノベーションハブ推進プログラム※(プログラムディレクター:小安重夫)は、国立研究開発法人科学技術振興機構(JST)が実施する「イノベーションハブ構築支援事業」に採択された「高精度の予測に基づく予防医療の実現に向けた疾患ビッグデータ主導型イノベーションハブ」の構築と、理化学研究所のプロジェクトとして健康医療データプラットフォーム拠点の形成、および文部科学省が進める「Society 5.0実現化研究拠点支援事業」において大阪大学が採択された「ライフデザイン・イノベーション研究拠点」(理化学研究所は協力機関)の課題を実施しています。 具体的には、高精度の予測に基づく、一人ひとりに合った予防医療の実現を目指して、多数のヘルスデータを取得し、機械学習などの人工知能技術を利用して解析を行い、健康状態の可視化と予測を行います。データを扱う基礎となるデータベースの開発、機械学習では、

  • 水に特有の物理的特性の起源を解明 | 理化学研究所

    要旨 理化学研究所(理研)放射光科学総合研究センター ビームライン開発チームの片山哲夫客員研究員(高輝度光科学研究センターXFEL利用研究推進室研究員)、ストックホルム大学のキョンホァン・キム研究員、アンダース・ニルソン教授らの国際共同研究グループは、X線自由電子レーザー(XFEL)[1]施設SACLA[2]を利用し、過冷却状態[3]にある水(H2O)の構造を捉えることに成功しました。 水は生命に不可欠な液体ですが、その挙動に関する理解は不完全です。例えば、温度を下げていくときの密度、熱容量[4]、等温圧縮率[5]といった熱力学的な特性の変化は、水と他の液体とでは逆の挙動を示します。そのため、水の熱力学的な特性については長年議論されており、いくつかの仮説が提唱されています。そのうちの一つが、水には密度の異なる二つの相があり、その間を揺らいでいるという仮説です。しかし、温度を0℃未満に下げた

  • 脳の基本単位回路を発見 | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター局所神経回路研究チームの細谷俊彦チームリーダー、丸岡久人研究員らの研究チーム※は、哺乳類の大脳皮質[1]が単純な機能単位回路の繰り返しからなる六方格子状の構造を持つことを発見しました。 大脳はさまざまな皮質領野[2]に分かれており、それぞれ感覚処理、運動制御、言語、思考など異なる機能をつかさどっています。大脳は極めて複雑な組織なため、その回路の構造には不明な点が多く残っています。特に、単一の回路が繰り返した構造が存在するか否かは不明でした。 今回、研究チームは、大脳皮質に6層ある細胞層の一つである第5層をマウス脳を用いて解析し、大部分の神経細胞が細胞タイプ特異的なカラム状の小さなクラスター(マイクロカラム)を形成していることを発見しました。マイクロカラムは六方格子状の規則的な配置をとっており、機能の異なるさまざまな大脳皮質領野に共通に存在して

  • 海馬から大脳皮質への記憶の転送の新しい仕組みの発見 | 理化学研究所

    海馬から大脳皮質への記憶の転送の新しい仕組みの発見 -記憶痕跡(エングラム)がサイレントからアクティブな状態またはその逆に移行することが重要- 要旨 理化学研究所(理研)脳科学総合研究センター理研-MIT神経回路遺伝学研究センターの利根川進センター長と北村貴司研究員、小川幸恵研究員、ディラージ・ロイ大学院生らの研究チーム※は、日常の出来事の記憶(エピソード記憶)が、マウスの脳の中で時間経過とともに、どのようにして海馬から大脳新皮質へ転送され、固定化されるのかに関する神経回路メカニズムを発見しました。 海馬は、エピソード記憶の形成や想起に重要な脳領域です。先行研究により、覚えた記憶は、時間経過とともに、海馬から大脳皮質に徐々に転送され、最終的には大脳皮質に貯蔵されるのではないかとのアイデアがありますが、大脳皮質への記憶の転送に関して、神経回路メカニズムの詳細はほとんど分かっていませんでした。

  • 式が書ければ「京」が使える | 理化学研究所

    要旨 理化学研究所(理研)計算科学研究機構コデザイン推進チームの村主崇行特別研究員らと、千葉大学の堀田英之特任助教、神戸大学の牧野淳一郎教授、京都大学の細野七月特任助教、富士通株式会社の井上晃マネージャーらの共同研究グループ※は、スーパーコンピュータ「京(けい)」[1]を用いて、数式のような簡潔な指示を書くだけでスーパーコンピュータでの計算に必要となる高度なプログラムを自動生成できるプログラミング言語「Formura」を開発しました。 スーパーコンピュータでの計算に必要となるプログラムはときに数十万行にも及び、作成やチューニングは大変困難です。一方で、原理的にはシミュレーションしたい自然現象とその離散化法[2]を指定すれば、プログラムは機械的に生成できます。しかし、プログラミングはシミュレーションとコンピュータ双方に深い知識が必要となる非常に高度な作業であり、多数の計算機を協調して動作させ

  • シビレエイ発電機 | 理化学研究所

    要旨 理化学研究所(理研)生命システム研究センター集積バイオデバイス研究ユニットの田中陽ユニットリーダーらの共同研究グループ※は、シビレエイ[1]の電気器官を利用した新原理の発電機を開発しました。 火力や原子力といった既存の発電方法に代わる、クリーンで安全な発電方法の開発が急がれています。そこで近年、生物機能に着目し、グルコース燃料電池[2]や微生物燃料電池[3]などのバイオ燃料電池が開発されていますが、従来の発電法に比べて出力性能が劣っています。 一方、シビレエイに代表される強電気魚は、体内の電気器官で変換効率が100%に近い効率的な発電を行っています。これは、ATP(アデノシン三リン酸)をイオン輸送エネルギーに変換する膜タンパク質が高度に配列・集積化された電気器官とその制御系である神経系を強電気魚が有しているためです。共同研究グループは、これを人工的に再現・制御できれば、画期的な発電方

    chess-news
    chess-news 2016/06/03
    ピカチュウ!
  • 乱雑さを決める時間の対称性を発見 | 理化学研究所

    要旨 理化学研究所(理研)理論科学連携研究推進グループ分野横断型計算科学連携研究チームの横倉祐貴基礎科学特別研究員と京都大学大学院理学研究科物理学宇宙物理学専攻の佐々真一教授の共同研究チームは、物質を構成する粒子の“乱雑さ”を決める時間の対称性[1]を発見しました。 乱雑さは、「エントロピー[2]」と呼ばれる量によって表わされます。エントロピーはマクロな物質の性質をつかさどる量として19世紀中頃に見い出され、その後、さまざまな分野に広がりました。20世紀初頭には、物理学者のボルツマン、ギブス、アインシュタインらの理論を踏まえて「多数のミクロな粒子を含んだ断熱容器の体積が非常にゆっくり変化する場合、乱雑さは一定に保たれ、エントロピーは変化しない」という性質が議論されました。同じ頃、数学者のネーターによって「対称性がある場合、時間変化のもとで一定に保たれる量(保存量)が存在する」という定理が証

    chess-news
    chess-news 2016/04/27
    わけがわからないよ。 ただの理解不足です。 流体力学的現象を対称性と言ってるのかな?そうか、対称性ってレイノルズ数が同じ時みたいなやつか。レイノルズ数的なのが、エントロピーに対して存在するってことか?
  • 電気で生きる微生物を初めて特定 | 理化学研究所

    要旨 理化学研究所環境資源科学研究センター生体機能触媒研究チームの中村龍平チームリーダー、石居拓己研修生(研究当時)、東京大学大学院工学系研究科の橋和仁教授らの共同研究チームは、電気エネルギーを直接利用して生きる微生物を初めて特定し、その代謝反応の検出に成功しました。 一部の生物は、生命の維持に必要な栄養分を自ら合成します。栄養分を作るにはエネルギーが必要です。例えば植物は、太陽光をエネルギーとして二酸化炭素からデンプンを合成します。一方、太陽光が届かない環境においては、化学合成生物と呼ばれる水素や硫黄などの化学物質のエネルギーを利用する生物が存在します。二酸化炭素から栄養分を作り出す生物は、これまで光合成か化学合成のどちらか用いていると考えられてきました。 共同研究チームは、2010年に太陽光が届かない深海熱水環境に電気を非常によく通す岩石が豊富に存在することを見出しました。そして、電

  • ヒトの細胞間相互作用ネットワークの概要を可視化 | 理化学研究所

    要旨 理化学研究所(理研)ライフサイエンス技術基盤研究センター ゲノム情報解析チームのピエロ・カルニンチ チームリーダー、ジョーダン・ラミロフスキー特別研究員、アリスター・フォレスト客員主管研究員らの研究チームは、細胞が互いにコミュニケーションする際に用いるタンパク質の大規模な発現解析を行い、ヒトで機能している細胞間相互作用の概要を可視化することに成功しました。 単細胞生物から多細胞生物への進化は、生物進化における最大の変化の1つです。多数の細胞が協調して1つの個体を作り上げ、その体を維持していくためには、細胞間コミュニケーション(細胞間相互作用)が非常に重要です。細胞間相互作用は、細胞から分泌されるホルモンや成長因子などのリガンド[1]と、細胞膜表面に存在する受容体と呼ばれるタンパク質の相互作用によって担われており、特定の生命現象に関わるリガンドや受容体の研究が精力的に行われています。し

  • STAP細胞論文に関する調査結果について | 理化学研究所

    昨日12月25日に「研究論文に関する調査委員会」より調査報告書の提出があり、受理致しました。 調査報告書(全文)(2014年12月26日修正※、2015年1月8日修正※、2015年1月23日修正※) 調査報告書(スライド) 野依良治理事長コメント ※調査報告書(全文)について、一部に記載の間違いがあったため修正しました。 (訂正箇所:2014年12月26日) ①5ページ 2行目:【誤】約200kb 【正】約20kb ②10ページ 下から4行目:【誤】STAP幹細胞FES1 【正】ES細胞FES1 ③30ページ 1行目:【誤】データの捏造および改ざん 【正】データの捏造 (訂正箇所:2015年1月8日) 6ページ 20行目:【誤】第3染色体領域 【正】3つの染色体領域 7ページ 2行目、3行目:【誤】Charles river 【正】Charles River 9ページ 下から12行目:【誤

  • STAP細胞問題にご関心を寄せられる方々へ | 理化学研究所

    再生医学分野を世界的に先導してきた笹井芳樹 発生・再生科学総合研究センター副センター長の早すぎる死を防げなかったことは、痛恨の極みです。笹井副センター長に謹んで哀悼の意を表すとともに、ご家族に心からお悔やみ申し上げます。 今、大切なことは、この不幸がこれ以上周辺の関係者に影響を与えないことであると認識しております。波紋が社会的に大きく広がる中で、関係者の精神的負担に伴う不測の事態の惹起を防がねばなりません。 3月以降、STAP論文の著者たちが、多方面から様々な批判にさらされ、甚だしい心労が重なったことを懸念し、メンタルケアなどに留意していたところですが、今回の事態に至ってしまったことは残念でなりません。 現在、当該論文著者のみならず、現場の研究者、特に若い研究者たち、技術者、事務職員ならびにその家族、友人たちの動揺と不安は深刻であり、非常に大きな心労を抱えている者もおります。理研は、今後も

    chess-news
    chess-news 2014/08/08
    誰かの名前入りの記事でないのね。
  • 1