みなさんこんにちは。技術創発推進室の高岡です。 気の早い桜は咲き始めたようですが、そろそろ年度末、みなさまいかがお過ごしでしょうか。 このところの私は、これまでの AI 関連の開発を振り返って、実験管理、結構面倒くさかったな、という反省をしているところです。機械学習系の案件に関わっている皆さんには、ご同意いただけるんじゃないでしょうか。 ■実験管理は必須。でも面倒! 機械学習モデル開発のワークフローでは、次のような作業がよく発生します。 あるデータと設定で、機械学習モデルを訓練して、パラメータを得る訓練済みの機械学習モデルの性能を調べて、記録するモデル同士の性能を比較する こうした「条件設定と訓練、性能測定、比較」のサイクルを「実験」と呼び、実験を繰り返しながら、より良いモデルを模索するわけです。経験者の皆さんにはおなじみですね。 このとき「このモデルはどういう条件の下で得られたか」「それ