タグ

APIとdeeplearningに関するclavierのブックマーク (2)

  • OpenAI API の ファインチューニングガイド|npaka

    1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

    OpenAI API の ファインチューニングガイド|npaka
  • (主に)ディープラーニングの成果を利用したAPI集(自分用) - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ディープラーニングなどの成果を活用したAPI一覧 個人の整理用なので、分類や説明は大雑把です。 画像解析 IBM Watson AlchemyVision 機能・特徴 画像内で見つかった物体・人・文字を返す 試してみる IBM Watson Visual Insights(2016年6月末廃止予定) 機能・特徴 消費者の興味、活動、趣味、ライフイベント、製品に関連した洞察を抽出するためにオンラインの画像、ビデオを分析する 試してみる IBM Watson Visual Recognition 機能・特徴 画像中に映った代表的なものの関連

    (主に)ディープラーニングの成果を利用したAPI集(自分用) - Qiita
  • 1