タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

AlgorithmとmachineLearningとmathに関するclavierのブックマーク (2)

  • 最適輸送の解き方

    最適輸送問題(Wasserstein 距離)を解く方法についてのさまざまなアプローチ・アルゴリズムを紹介します。 線形計画を使った定式化の基礎からはじめて、以下の五つのアルゴリズムを紹介します。 1. ネットワークシンプレックス法 2. ハンガリアン法 3. Sinkhorn アルゴリズム 4. ニューラルネットワークによる推定 5. スライス法 このスライドは第三回 0x-seminar https://sites.google.com/view/uda-0x-seminar/home/0x03 で使用したものです。自己完結するよう心がけたのでセミナーに参加していない人にも役立つスライドになっています。 『最適輸送の理論とアルゴリズム』好評発売中! https://www.amazon.co.jp/dp/4065305144 Speakerdeck にもアップロードしました: https

    最適輸送の解き方
  • EMアルゴリズム徹底解説 - Qiita

    こんにちは、DeNAでデータサイエンティストをやっているまつけんです。 ブログは、混合ガウス分布を題材に、EMアルゴリズムという機械学習界隈では有名なアルゴリズムを丁寧に解説することを目的として書いています。 また、この記事は、「数学とコンピュータ Advent Calendar 2017」の24日目の記事です。 そして長いです。 1. はじめに 観測した確率変数 $X$ をよく表現する、モデル $p(x|\theta)$ のパラメータを求めることが確率分布の推定ではよく行われます。つまり最尤法ですね。より複雑な分布になるとその分布の構造に潜在変数(Latent Variable) $Z$ があると仮定してモデル化を行うと、シンプルな組み合わせで $X$ の分布を表現できることがあります。今回扱う混合ガウス分布もその一つです。 のちに説明しますが、データセットの種別を完全データ集合と不完

    EMアルゴリズム徹底解説 - Qiita
  • 1