MIRU 2019 チュートリアル http://cvim.ipsj.or.jp/MIRU2019/index.php?id=tutorial 松井 勇佑(東京大学生産技術研究所)http://yusukematsui.me/index_jp.html ベクトルの集合を前にして新たにクエリベ…

以下の論文が面白かったので紹介したいと思います。Learning a Spelling Error Model from Search Query Logs Noisy Channel Modelによるスペル訂正エンジンスペル訂正には標準的なNoisy Channel Modelを使うことができます(最近は識別モデルも流行りのようです)。A Spelling Correction Program Based on a Noisy Channel ModelNoisy Channel Modelでは、入力が与えられたときの訂正候補の確率を以下のようにモデル化します。言語モデル はコーパスやクエリログから単語N-gram、文字N-gramなどを推定し、スムージングして利用することが一般的です。エラーモデル は入力と出力候補の編集距離をもとに計算することが多いです(他に共起頻度やクリックログを利
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く