本記事ではOn the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong Baselinesという論文を紹介します。 この論文ではBERTのfine-tuningが安定しにくいという問題に対して、単純で良い結果が得られる方法を提案しています。 またBERTのfine-tuningが安定しにくいという問題を細かく分析しており、参考になったのでそのあたりについてもまとめます。 本記事を読むことでBERTを自分の問題でfine-tuningするときの施策を立てやすくなるかと思います。 目次 本記事で掲載する図や表は紹介する論文から引用しています。 紹介する論文で提案する方法でBERTをfine-tuningすることで、Figure 1のように学習が安定し、かつ平均的にも高い評価尺度が得られるようになりま