■イベント :【SenseTime Japan × Sansan】画像処理勉強会 https://sansan.connpass.com/event/230636/ ■登壇概要 タイトル:深層学習時代の文字認識とその周辺 発表者: 技術本部 DSOC R&D研究員 宮本 優一 ▼Twitter https://twitter.com/SansanRandD

エムスリーエンジニアリンググループ AI・機械学習チームの中村(@po3rin) です。 好きな言語はGo。仕事では主に検索周りを担当しています。最近、ユーザーの検索体験の向上のために、以下の検索評価に関する本を読んでいました。 情報アクセス評価方法論 作者:酒井 哲也発売日: 2015/05/19メディア: 単行本 そこで今回は検索評価指標の1つであるsDCG (session-based Discounted Cumulative Gain)を使ってエムスリーの検索ログから体験の悪かった検索を抽出してみたのでその方法を紹介します。 現状の検索監視 現状の検索監視の問題 nDCG sDCG 線形横断 最下位クリックにおける検索結果の破棄 クリック=適合文書 nsDCGを実際の検索ログに使ってみる sDCGを使って感じたこと まとめ We're hiring !!! Reference 現
In the unit test approach, the data scientist opts in by analyzing the data, deciding the validations (such as, “I expect delivery time to be not more than one hour”), and recording these validations. These validations are then run on all new data. In the preceding example, the validation checks every delivery time input to be under one hour. However the introduction of new products can change thi
Authored byYen-Jung Chang ML Research Scientist at Facebook February 20, 2020 Co-authors: Yen-Jung Chang, Yang Yang, Xiaohui Sun, and Tie Wang At LinkedIn, ThirdEye is the backbone of our monitoring toolkit. We use it to keep track of a variety of metrics, whether it be related to production infrastructure and AI model performance, or business impact, such as page view or click count. It’s a key q
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く