MIRU 2019 チュートリアル http://cvim.ipsj.or.jp/MIRU2019/index.php?id=tutorial 松井 勇佑(東京大学生産技術研究所)http://yusukematsui.me/index_jp.html ベクトルの集合を前にして新たにクエリベ…

ステップ2 $r_{nk}$を固定して$J$を$\mu_k$で偏微分して最小化します。 式変形をすると、 クラスタ$k$の最適なCentroidは上記のように、クラスター$k$に所属しているデータの平均であることがわかりました。 上記より最初のデモンストレーションで行っていたアルゴリズムは損失関数$J$の最適化によって導出されたものを適用していたことがわかります。 2−3. 実装 上記で示した2ステップを計算して、イテレーションを回すだけのシンプルなプログラムです。最後に更新前のmuと更新後のmuの差を取り、それがある程度小さくなったら収束したと判断し、イテレーションを止めるようにしています。 下記はアルゴリズム部分の抜粋です。プログラムの全文はコチラにあります。 for _iter in range(100): # Step 1 =============================
(編注:2020/10/01、2016/07/29、いただいたフィードバックをもとに記事を修正いたしました。) 目次: さまざまな勾配降下法 バッチ勾配降下法 確率的勾配降下法 ミニバッチ勾配降下法 課題 勾配降下法を最適化するアルゴリズム Momentum(慣性) Nesterovの加速勾配降下法 Adagrad Adadelta RMSprop Adam アルゴリズムの可視化 どのオプティマイザを選ぶべき? SGDの並列化と分散化 Hogwild! Downpour SGD SGDのための遅延耐性アルゴリズム TensorFlow Elastic Averaging SGD 最適化されたSGDに対する更なる戦略 シャッフル学習とカリキュラム学習 バッチ正規化 早期終了 勾配ノイズ 結論 参考文献 勾配降下法は、最適化のための最も知られたアルゴリズムの1つです。これまではニューラルネット
class MFbpr(Recommender): ''' コンストラクタとか他の処理 ''' def buildModel(self): loss_pre = sys.float_info.max nonzeros = self.trainMatrix.nnz hr_prev = 0.0 sys.stderr.write("Run for BPR. \n") for itr in xrange(self.maxIter): start = time.time() # Each training epoch for s in xrange(nonzeros): # sample a user u = np.random.randint(self.userCount) itemList = self.trainMatrix.getrowview(u).rows[0] if len(itemL
Python3に対応しました(2016.01.25) MALSSの仕様変更に対応しました(2020.02.08) 特徴量選択について追記しました(2020.08.22) Pythonでの機械学習を支援する,MALSS(Machine Learning Support System)というツールを作りました(PyPI/GitHub). 導入編,基本編と書いてきて,今回は応用編です. 準備 前回と同じデータを使います. 普通にfitメソッドを呼んでしまうとモデリングを行うため処理に時間がかかってしまいます. そこで,algorithm_selection_onlyオプションをTrueにして,アルゴリズム選択のみを行うようにします. from malss import MALSS import pandas as pd data = pd.read_csv('http://www-bcf.usc
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く