タグ

algorithmとMLに関するclavierのブックマーク (4)

  • 最近点対問題の線形時間乱択アルゴリズム - うどん記

    これは Competitive Programming Advent Calendar Div2013 の 20 日目の記事です.最近点対問題の話をします. 最近点対問題は,空間上に点の集合が与えられた時に,その中で最も距離が近いペアを探す問題です. 応用としては,何らかのオブジェクトを特徴ベクトルに写した後で,最も類似したペアを探したいときなどに役に立つのではないかと思います.競技プログラミング界では,今年のICPC会津大会で3次元上の最近点対問題が出題されました. 空間が平面のときは分割統治による $O(n\log{n})$ 時間アルゴリズムが有名かと思います.今回は一般の次元で,(ハッシュマップを用いて)線形時間で動く実装が楽そうな乱択アルゴリズムの紹介をします.参考にした文献は以下のサーベイです. Smid, Michiel. Closest point problems in c

    最近点対問題の線形時間乱択アルゴリズム - うどん記
  • SmartNewsを支える機械学習

    ニュースアプリSmartNews(https://www.smartnews.be/)の背景のアルゴリズムについてTokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)で話させていただいた際の資料です。 •SmartNews iphone版: https://itunes.apple.com/jp/app/id579581125 •SmartNews Android版 https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android •SmartNews開発者ブログ http://developer.smartnews.be/blog/

    SmartNewsを支える機械学習
  • A/Bテストを超え、学習しながらウェブを最適化させる手法 (Bandit Algorithms for Website Optimization)

    ふと気になったので読んでみたら、当たりをひいた。 強化学習をウェブサイトの最適化に利用する方法に関してので、A/Bテストの何が問題かを説明してそれを克服するためのアルゴリズムを3つ紹介している Epsilon-greedy SoftMax UCB1 コードはPythonで書かれているので読みやすい。 実際のビジネスでは、A/Bテストで等確率でAB振り分けるために劣っている方のテストの分だけ収益が減ってしまうし、かといってテストをしないと、よりよいサイトを見出す機会がなくなってしまう。つまりexploreを最大化するか、exploitを最大化するかというようなジレンマを抱えることになる。 求められているのは、劣っているサイトデザインに対するテスト(損失)を最小にしつつベストなサイトデザインに収斂していく手法である。そういう問題をMultiarmed Bandit Probremと呼ぶらしく

    A/Bテストを超え、学習しながらウェブを最適化させる手法 (Bandit Algorithms for Website Optimization)
  • Deep Learning の概要 - Sideswipe

    はじめに 去年の 機械学習×プログラミング勉強会 vol.2 で、Deep Learning の概要について発表させていただきました。誘っていただいた @07c00 さん、ありがとうございました。 Deep learning from Kazuya Gokita 詳しくは上記のスライドを御覧ください(注:Auto Encoder と DBM をごっちゃに説明しているので正しくありません、そのうち直します)。 Deep Learning とは Deep Learning は、ニューラルネットワーク*1のひとつで、5層とか10層とか、従来の手法ではうまく学習できなかった深い層の学習をうまくできるようにしたアルゴリズムです。 Deep Learning が目指したところ 入力に近い層では、単純な特徴抽出しかできませんが、それらの重み付け和をとると表現能力が上がります。それをさらに上位の層に入力し

    Deep Learning の概要 - Sideswipe
  • 1