タグ

mathと確率に関するclavierのブックマーク (2)

  • ベイズ統計 - HELLO CYBERNETICS

    はじめに データとモデル 確率モデル 確率モデルを作る 複雑なモデルを使うことが最善手であるか モデルの具体的な作り方 モデルの仮定 アンサンブルモデル 点推定モデル 最尤推定 制約付き最尤推定※ (最大事後確率推定) ベイズ予測分布と点推定 ベイズ統計学 ベイズ予測分布を得ることの意義 ベイズ統計学の主題 特異モデルと正則モデル ベイズ統計学のまとめ はじめに ベイズだの頻度論だので盛り上がっているので、ぶん殴られる覚悟で書いてみます。 データとモデル 観測値がランダムに見える場合、それを確率変数 $X$ として扱います。 さて、今、$X$ には我々が知ることのできない真の分布 $q(X)$ があるとしましょう。もしも、$X$ を無限回観測し満遍なくデータを集められるとすれば、$q(X)$ の形状を把握することができるかもしれません。 ところが、そんなのは幻想であって実際に無限回の観測を

    ベイズ統計 - HELLO CYBERNETICS
  • WebサービスのA/Bテストや機械学習でよく使う「確率分布」18種を解説 - paiza times

    主な確率分布の関連図 こんにちは、吉岡(@yoshiokatsuneo)です。 Webサービスを運営していると、利用状況を分析・予測したり、A/Bテストなどで検証したりすることがよくあります。 データを一個一個見ていてもよくわからないので、データ全体や、その背景の傾向などがまとめて見られると便利ですよね。そんなとき、データの様子を表現するためによく使われているのが「確率分布」です。 学校の試験などで使われる偏差値も、得点を正規分布でモデル化して、点数を変換したものです。 今回は、Webサービスなどでよく使われる確率分布18種類を紹介します。 それぞれ、Webサービスでの利用例やPythonでグラフを書く方法も含めて説明していきます。コードは実際にオンライン実行環境paiza.IOで実行してみることができますので、ぜひ試してみてください。 【目次】 正規分布 対数正規分布 離散一様分布 連続

    WebサービスのA/Bテストや機械学習でよく使う「確率分布」18種を解説 - paiza times
  • 1