タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

mathとbayesianに関するclavierのブックマーク (1)

  • ベイズ推論による機械学習の基本 - 作って遊ぶ機械学習。

    今回は基的なベイズ学習の概念と流れを説明したいと思います。まず始めに、ベイズ学習のすべての基となる2つの計算規則(和の規則、積の規則)を取り上げます。また、ベイズ学習に関わるややこしい用語たち(データ、尤度関数、事前分布、事後分布、エビデンス、予測分布、などなど)に関しても念のためここで整理しておきたいと思います。そして最後に、簡単な多次元のガウス分布とウィシャート分布を使ったベイズ推論の例を取り上げ、それぞれの用語や概念との具体的な結びつきについて触れたいと思っています。 ・ベイズ学習の基概念 さて、確率モデルを使ったベイズ推論を行う上で最小限必要なのは次のたった2つの計算ルールです。 <和の規則> <積の規則> は同時分布(joint distribution)、は条件付き分布(conditional distribution)と呼ぶんでした。極端な言い方をしてしまうと、ベイズ推

    ベイズ推論による機械学習の基本 - 作って遊ぶ機械学習。
  • 1