タグ

PythonとProphetに関するdelegateのブックマーク (2)

  • Facebookが開発した時系列予測モデルProphetで可能な4つのタイプの分析 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 時系列データは、ビジネスの世界で最も多く扱われているタイプのデータです。 しかし、その活用となると、ラインチャートで指標の推移を可視化して、その上下に注目する、あるいは、設定したターゲットを満たしているかを確認するだけにとどまってしまっていることも少なくありません。 一方で、時系列のデータが手元にあれば、将来の指標を予測したり、トレンドの変化があったタイミングを探索したり、季節性の影響を分析したりすることで、ビジネスにとってより有益な気付きを得られます。 そこで、今回はFacebookが自らのビジネスの改善のために開発した、時系列予測の

    Facebookが開発した時系列予測モデルProphetで可能な4つのタイプの分析 - Qiita
  • Pythonで実践する時系列データ分析: pandasとProphetで未来を予測する - Qiita

    はじめに ビジネスの世界で「先を読む」ことの重要性は言うまでもありません。売上予測、需要予測、株価分析など、時系列データを扱う機会は非常に多いですよね。しかし、時系列データの分析は一筋縄ではいきません。トレンド、季節性、外部要因など、考慮すべき要素が多岐にわたります。 そこで記事では、Pythonを使って時系列データを効果的に分析する方法をご紹介します。特に、データサイエンティストの強い味方であるpandasライブラリの時系列機能と、FacebookのAIチームが開発した予測ライブラリProphetに焦点を当てます。 これらのツールを使いこなせば、複雑な時系列データでも、まるで未来を見通すかのように分析できるようになります。さあ、一緒にPythonで時を操る魔法を学んでいきましょう! 1. pandasを使った基的な時系列データ操作 1.1 データの読み込みと前処理 まず、時系列データ

    Pythonで実践する時系列データ分析: pandasとProphetで未来を予測する - Qiita
  • 1