学習方法 ゲームキャプチャ + アクションで報酬(game score)を与えそれを学習させる。 game scoreの取得については、ROMのバイナリ情報を解析する必要があります。 この辺はあまり詳しくありませんが海外にROMの情報が出ているとのことです。 ニューラルネットワークアーキテクチャ 学習関数は定番のReLU。教科学習のアルゴリズムは勾配降下法(Adam)でやってます。 ReLU 勾配降下法 ニューラルネットワークの外観 手順 ⅰ.エミュレータの準備 エミュレータの動作に関しては処理が複雑なのでgitにあげておきます。 https://github.com/tsunaki00/siva_game ※ 他のマシンで試してないので動くかわかりません。 エミュに興味あるかたは海外のgitなどをぐぐってみてください! ⅱ.ROMの抜き出し 上記にも記載しましたが、ROMの抜き出し方法は