本サイトは経済産業省がオープンデータを実践するために設置した試験サイト(β版)です。本サイトは、データ活用に関心がある企業、NPO、個人等の方々から色々な意見をいただくことで、少しでも使い勝手の良いサイトにしていくとともに、個人情報等に配慮した上で、経済省のみならず政府全体におけるオープンデータ推進の検討に活用させていただくことも考えております。そのため、本サイトでは、ユーザーの方々から様々な意見や要望をいただき、対して様々な意見や要望をいただく仕組みの一つとして、「DATA METI活用パートナーズ」を設置しております。この「DATA METI活用パートナーズ」の概要と申込についてはこのページのとおりとなりますので、御関心のある方は是非ご覧下さい。 なお、いただいたコメントを踏まえ、柔軟な修正を逐次していくことを考えております。そのため、利用規約も含め、予告無く本サイトは変更される可能性
この記事はThe top 20 data visualisation toolsの原著者許諾済みの日本語訳です。 By Brian Suda on September 17, 2012 Translated by Tatsuo Sugimoto 2014年4月28日更新:オリジナル記事が以前のサイトから移転したため発生していた画像の非表示に対応しました。 わたしがもっともよくきかれる質問のひとつが、データビジュアライゼーションを始める方法についてです。このブログの先へ進むには、練習し、さらに実践し、利用できるツールを理解する必要があります。この記事では、シンプルなチャートから複雑なグラフ、地図、インフォグラフィックスまで、ビジュアライゼーションを作成するための20種類のツールを紹介しようとおもいます。ほとんどのツールは無料で利用でき、そのうちいくつかはすでにインストール済みかもしれません。
統計関係総合リンク| 統計ソフト紹介関係| 統計ソフト会社| 共分散構造モデル| 統計ソフト おもらい君(リンク集 |全般|多変量解析・多次元尺度解析|多変量解析 |多次元尺度解析|基礎統計等| 分布|特定アプリマクロ)| 統計用データ| WWW上での統計処理| 人| 日本の統計学関係| 日本のメーリングリスト| <WWWで統計を学習しよう>| 検索系相談等| 統計教育リンク| 統計学用語集| case study(問題集)| 統計学から分散分析・重回帰まで| 総合的| 特定分野 ( 統計教育・注意| 研究法| 歴史| 測定| サンプリング| 分布| 検定力| meta-analysis| resampling| exact test| conjoint analysis| 実験計画法・分散分析 | 多変量解析| 因子分析・共分散構造モデル| multi level| 多次元尺度解析| グ
やぁ。4月も終わりだというのに、いやに寒い日が続いてるね、元気かい? 面白い話がtwitterに流れていたので紹介したい。 日経コンピュータの話。ビックデータ神話に乗り、多額の費用で解析した靴屋の話、解析結果、冬にブーツが売れ、夏にサンダルが売れるw。 https://twitter.com/yawachi/status/326460494154194944 これを見て君はどう思う? twitterでは皆がこのニュースに対して嘲笑を投げかけていた。 そりゃそうだろう、大金を掛けて誰でもわかることしか出てこないなんて、笑われて当然さ。 データマイニングってのは、やっぱり、もっとこう、あの有名な「おむつとビール」ような意外性のあるものじゃないとね。 そう、データマイニングに必要なのは意外性だ! あの靴屋は全く馬鹿なことをしたもんだ、ゲラゲラ! OK、笑いが取れたようなので、もう一つ同じような話
Author:くるぶし(読書猿) twitter:@kurubushi_rm カテゴリ別記事一覧 新しい本が出ました。 読書猿『独学大全』ダイヤモンド社 2020/9/29書籍版刊行、電子書籍10/21配信。 ISBN-13 : 978-4478108536 2021/06/02 11刷決定 累計200,000部(紙+電子) 2022/10/26 14刷決定 累計260,000部(紙+電子) 紀伊國屋じんぶん大賞2021 第3位 アンダー29.5人文書大賞2021 新刊部門 第1位 第2の著作です。 2017/11/20刊行、4刷まで来ました。 読書猿 (著) 『問題解決大全』 ISBN:978-4894517806 2017/12/18 電書出ました。 Kindle版・楽天Kobo版・iBooks版 韓国語版 『문제해결 대전』、繁体字版『線性VS環狀思考』も出ています。 こちらは10刷
Popular statistical tables, country (area) and regional profiles Population Population, surface area and density PDF | CSV Updated: 25-Oct-2023 International migrants and refugees PDF | CSV Updated: 25-Oct-2023 Population growth, fertility, life expectancy and mortality PDF | CSV Updated: 25-Oct-2023 Population in the capital city, urban and rural areas PDF | CSV National accounts GDP and GD
はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、
Marketing is at an inflection point. Here’s why that’s an opportunity
久々の更新です。前々から注目していた『Data Mining and Statistics for Decision Making』が届きました。ちょっと読んだだけでも、ここ数年で一番の応用本だと感じました。単なる応用本ではなく、解析やデータマイニングがビジネスに利用されることを非常に強く意識されている内容です。 Data Mining and Statistics for Decision Making (Wiley Series in Computational Statistics) 作者: Stéphane Tufféry出版社/メーカー: Wiley発売日: 2011/04/18メディア: ハードカバー購入: 15人 クリック: 478回この商品を含むブログ (2件) を見る 見出しを読むだけでも素晴らしいのが分かります。おしゃれStatistics勉強会で使っている『Stati
thriftとかhadoopなど,何やらいろいろと手を出してしまい,ここのところブログの更新が滞ってしまっていますが,今日は前から書きたかったトピックについて自分へのメモの意味も含めて記しておきたいと思います. はじめに 最近,といっても結構前からなのですが,海外のブログなどで「機械学習の勉強を始めるガイドライン」についてのエントリーがいくつか見られ,かつ,議論も少し盛り上がっています.僕は機械学習が好きなだけで,専門というにはほど遠いのですが,僕も一利用者としてはこのトピックに関してはとても興味があります. 機械学習というと,色々な数学的な知識が必要であったり,統計学や人工知能の知識も必要になったりしまったりと,専門的に学ぶ機会が無かった人にとっては興味が湧いてもなかなか始めるには尻込みしてしまうことかと思います.今日紹介するエントリーは,そんな方々にヒントになるような内容になっていると
NumPy is the fundamental package for scientific computing with Python. It contains among other things: a powerful N-dimensional array object sophisticated (broadcasting) functions tools for integrating C/C++ and Fortran code useful linear algebra, Fourier transform, and random number capabilities Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional containe
t検定の仮定 本来,t検定には,さまざまな仮定が伴うものである。 各群の標本が,いずれも正規母集団から得られたものであること(正規性) 各群の母分散が等しいこと(等分散性) したがって,t検定の実施に先立って,これらの仮定が成り立つかどうかを判断しなければならない。 そのために,正規性と等分散性について,それぞれ異なる検定を行う必要がある。 正規性の検定 2群のデータの分布が,正規分布に従うかどうかを検定する。 この目的には,Kolmogorov-Smirnov(コロモゴロフ・スミノフ)検定がよく用いられる。 Rでは,この頭文字をとって ks.test() という名前の関数が用意されている。 この検定の帰無仮説は「あるデータが,正規分布をなす」である。 したがって,P値が大きければ,正規分布であると判断できる。 > ks.test(x$A,"pnorm",mean=mean(x$A),sd
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く