タグ

algorithmとAIに関するhadzimmeのブックマーク (2)

  • 人工知能基本問題研究会(SIG-FPAI)での岡野原さんの発表のときに取ったメモ - yasuhisa's blog

    hillbig.cocolog-nifty.com ということで僕が取ったメモも出してみようと思う。内容としては大体3つで オンライン学習 L1正則化 索引を用いた効率化, 全ての部分文字列を利用した文書分類 という感じだったんだけど、最後の索引の付近はid:syou6162の勉強不足によりよく分からなかった。が、最初の二つはなんとか付いていけたので、出してみます。主に自分用のメモですが。 オンライン学習自然言語処理のデータは3つの特徴がある。 高次元 疎 冗長 で、あとはデータがばかでかいので、いわゆるバッチ処理だとメモリに乗り切らなかったりとかということがある。それでオンライン学習というのが今よく使われているようだ。オンライン学習の方法には下のような方法がある。簡単なものから難しいものへ。 perceptron 自然言語処理と相性がよい 色んなもののベースになる 線形分離できるときには

    人工知能基本問題研究会(SIG-FPAI)での岡野原さんの発表のときに取ったメモ - yasuhisa's blog
  • 教師なし単語分割の最前線。ベイズ meets 言語モデル - 武蔵野日記

    今日は daiti-m さんの教師なし単語分割話と id:nokuno さんの Social IME 話を聞きに行くため、仕事を午前中で終えて一路郷へ。第190回自然言語処理研究会(通称 NL 研、えぬえるけんと発音する)。六木から大江戸線で麻布十番、南北線に乗り換えて東大前で降りたのだが、ちょっと失敗して10分以上 Social IME の話を聞き逃してしまう。残念。 というわけで最初の発表については nokuno さん自身による発表スライドおよびshimpei-m くんのコメントを見てくれたほうがいいと思うが、個人的に思うのは(直接も言ったけど)研究発表とするならポイントを絞ったほうがいいんじゃないかなと。 研究の背景と目的 従来手法の問題点を指摘 それらを解決できる手法を提案(3つ) までは非常にいいのだが、そこから先がそのうちの1つしか説明・評価していないので、ちょっと述べてい

    教師なし単語分割の最前線。ベイズ meets 言語モデル - 武蔵野日記
  • 1