タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

Numpyに関するhirokistのブックマーク (3)

  • 私訳「暫定的 NumPy チュートリアル」 - naoya_t@hatenablog

    # 原文:http://www.scipy.org/Tentative_NumPy_Tutorial このチュートリアルを読む前に、Pythonについてちょっとは知っているべきだ。記憶をリフレッシュしたいと思うなら、Pythonチュートリアルを見てくるがいい。 このチュートリアルに出てくる例を試したいなら、あなたのPCに少なくとも Python NumPy はインストールされているべきで、他に入ってると便利なのは: ipython は拡張されたインタラクティブなPythonシェルで、NumPyの機能を探検するのにとても便利 matplotlib があると図表の描画が可能になる SciPy はNumPyの上で動く科学計算ルーチンを沢山用意してくれる 基礎 NumPy の主要なオブジェクトは、同じ型(普通は数)の要素のみから成り、正の整数のタプルで添字付けされた、均質なテーブル(というか多次元

    私訳「暫定的 NumPy チュートリアル」 - naoya_t@hatenablog
  • NumPy 配列の基礎 — 機械学習の Python との出会い

    NumPy 配列の基礎¶ ここでは,NumPy で最も重要なクラスである np.ndarray について, チュートリアルの方針 の方針に従い,最低限必要な予備知識について説明します. np.ndarray は, N-d Array すなわち,N次元配列を扱うためのクラスです. NumPy を使わない場合, Python ではこうしたN次元配列を表現するには,多重のリストが利用されます. np.ndarray と多重リストには以下のような違いがあります. 多重リストはリンクでセルを結合した形式でメモリ上に保持されますが, np.ndarray は C や Fortran の配列と同様にメモリの連続領域上に保持されます. そのため,多重リストは動的に変更可能ですが, np.ndarray の形状変更には全体の削除・再生成が必要になります. 多重リストはリスト内でその要素の型が異なることが許

  • Pythonの数値計算ライブラリ NumPy入門

    Scientific Computing Tools For Python — Numpy NumPy は Pythonプログラミング言語の拡張モジュールであり、大規模な多次元配列や行列のサポート、これらを操作するための大規模な高水準の数学関数ライブラリを提供する。(via Wikipedia) これまで知識があいまいだったNumPyについて、もう一度おさらいしたいと思います。NumPyはSciPyと併せて科学技術計算でよく利用されています。また、高速に行列演算ができるのでOpenCV(コンピュータビジョンライブラリ)でもNumPyを利用したPythonインタフェースが提供されるようになりました。 OpenCVPythonバインディングについては去年のエントリーでも取り上げていますので参考までに。 * さくらVPSOpenCVをインストールしてPythonから使う [2017/04/2

  • 1