はじめに こんにちは。 CX部門 データ・AI戦略室 データ戦略Gの田中です。 ぐるなびには2018年に新卒として入社し、レコメンドエンジンの開発や在庫・予約関連のデータ分析等に携わってきました。 現在は主に検索結果の並び順アルゴリズムの改善を行っています。 私たちのチームではアルゴリズム自体の改善に伴い、MLOps(機械学習の運用改善)にも取り組みました。 今回は、 MLOpsとは どうやって導入したか 導入で何が得られたか についてお話ししていきたいと思います。 検索アルゴリズム改善プロジェクトについて 検索の並び順アルゴリズム改善のプロジェクトが始まったのは約2年前でした。 それまでの並び順は複雑なルールベースで決められていました。 そこで機械学習のモデルを用いてより効果的な並び順を予測し、検索結果の改善・CVRの向上を試みました。 2020年の2月からプロジェクトがスタートし、3月