タグ

Programmingとhadoopに関するjjzakのブックマーク (4)

  • Hadoopに入門してみた - セットアップからHadoop Streaming まで - - download_takeshi’s diary

    大規模データを処理する必要が出て来たので、Hadoopを導入してみることになりました。 以下、導入メモです。 セットアップ 以下のような構成で試してみます。環境はCentOSです。 マスター(host001) ━┳ スレーブ(host002) ┣ スレーブ(host003) ┣ スレーブ(host004) ┗ スレーブ(host005) まずは各マシンにJavaをインストール。JDK1.6を落として来てrpmでインストールするか、yum install java-1.6.0*などとたたけばOKです。(rpmでインストールする場合は http://java.sun.com/javase/ja/6/download.html から jdk-6u18-linux-i586-rpm.binをダウンロードして、実行権限を与えてルートで実行すればインストールできます。) 続いてマスターノードにHado

    Hadoopに入門してみた - セットアップからHadoop Streaming まで - - download_takeshi’s diary
  • Hadoopで、かんたん分散処理 (Yahoo! JAPAN Tech Blog)

    ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog こんにちは、地域サービス事業部の吉田一星です。 今回は、Hadoopについて、Yahoo! JAPANでの実際の使用例を交えながら書きたいと思います。Hadoopとは、大量のデータを手軽に複数のマシンに分散して処理できるオープンソースのプラットフォームです。 複数のマシンへの分散処理は、プロセス間通信や、障害時への対応などを考えなければならず、プログラマにとって敷居が高いものですが、 Hadoopはそういった面倒くさい分散処理を一手に引き受けてくれます。 1台では処理にかなり時間がかかるような大量のデータも、複数マシンに分散させることで、驚くべきスピードで処理を行うことができます。 例えば、今まで1台でやっていた、あるログ集計処理

    Hadoopで、かんたん分散処理 (Yahoo! JAPAN Tech Blog)
  • Hadoopリンクまとめ(1) - 科学と非科学の迷宮

    Part1 / Part2 更新履歴 2010/06/20 リンク追加 入門、事例紹介、ニュース Part2へ移動 EC2、Pig、MapReduce、HDFS 新規追加 性能測定 公式 Welcome to Apache Hadoop! 日語訳 Hadoopユーザー会 Welcome to Hadoop MapReduce! "大規模な計算ノード・クラスタ上において膨大なデータを高速で並列処理するアプリケーションを作成するためのプログラミングモデルおよびソフトウェアフレームワーク" Welcome to Pig! "大規模なデータセットを分析するためのプラットフォーム""Pig の言語レイヤを構成しているのは、Pig Latin と呼ばれるテキストベースの言語" wikipedia Apache Hadoop - Wikipedia, the free encyclopedia Apa

    Hadoopリンクまとめ(1) - 科学と非科学の迷宮
  • blog.katsuma.tv

    前回、JavaScriptMap Reduceのコードが書けるHadoop Streamingについて紹介しました。 標準入出力さえサポートされてあれば、任意のコードでMap Reduuceの処理が書ける、というものでしたが、エンジニアはそもそも面倒くさがり。コードも書くのも面倒です。 と、いうわけで、今回はもうコードすら書かずにSQLライクでMap ReduceできるHiveというプロダクトについて、まとめたいと思います。 Hive Hiveとは、簡単に言うとHadoop上で動作するRDBのようなものです。 HDFSなどの分散ファイルシステム上に存在するデータに対して、HiveQLというSQLライクな言語で操作できます。 で、面白いのがHiveQLの操作は基的にMap Reduceのラッパーになっていること。 要するに、SELECT文実行すると裏でMap&Reduceのタスクが走り出

  • 1