タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

Programmingとnlpとtextに関するjjzakのブックマーク (3)

  • ノート/テキストマイニング/NLTK - 東邦大学理学部情報科学科 山内のサイト

    サイトトップ ノート マイニング ├マイニング ├バスケット解析 ├バスケット解析をRで ├図書貸出をRで └ テキストマイニング ├テキストマイニングTM ├TMとシソーラス ├PubMedをTM ├TMとMeSH ├TMとNLTK ├テキストマイニングとtagger ├医薬品添付文書DB ├論文の処理1 └ 分子進化学 ├分子進化学 └ Pythonと論文アクセス ├Pythonを使ってみる ├PythonPubMedPythonで...続き └ CUDA ├GPUProgrammingGuide ├Selandメモ ├数値積分 └ ACS、PHPからLDAP ├ACS導入 ├新規ホスト移行 ├再度やり直し ├OpenLDAP導入 └ Linuxでビデオ ├Linuxでビデオデータを作る ├AVIフ

  • [NLP][機械学習] 言語モデル覚え書き - tsubosakaの日記

    この文章について 最近言語モデル方面にも少し興味があるので自分の知識を整理する意味で書いてみた。NLPは専門ではないので、おかしなことを書いてある可能性がありますがその場合はご指摘ください。 文章ではn-gramモデル、単語の出現確率がn-1個前の単語のみに依存するモデルを考える。 問題 who is * という文が与えられたときに*にくる文字の確率を求めることを考える。この場合だと*には例えばheが当てはまるかもしれないが, isが入ることはまずなさそうに思える。このことは文法的にも説明ができると思うが、文法のルールを作るのは大変だし、文法的に正しい単語の中でどれが出やすいかということはできない。 一方で機械学習を使った言語モデルの文脈では文法的知識を余り持たず、与えられたコーパスから自動的に出やすい単語/表現を学習する方針をとる。 最尤推定 一番簡単なモデルとしては最尤推定を使うもの

    [NLP][機械学習] 言語モデル覚え書き - tsubosakaの日記
  • KyTea (京都テキスト解析ツールキット)

    English 京都テキスト解析ツールキット(KyTea、「キューティー」)は、日語など、単語(または形態素)分割を必要とする言語のための一般的なテキスト解析器です。 特徴 ダウンロード・インストール プログラム仕様 解析:手法の詳細, 入出力の形式, API 学習:モデル学習, 入手可能なモデル KyTeaを使った分野適応 開発情報 特徴 KyTeaには以下の機能が揃っています: 単語分割:分かち書きされていないテキストを適当な単語または形態素に分割する。 読み推定・品詞推定:かな漢字変換や音声認識、音声生成のために単語の発音を推定することができ、品詞を推定することもできます。 線形SVMやロジスティック回帰などを用いてそれぞれの分割点や読みを個別に推定するため、部分的にアノテーションされたデータを利用してモデルを学習することも可能です。 分類器の学習にはLIBLINEARを使用してい

  • 1