タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとdatabaseとdevelopmentに関するjjzakのブックマーク (2)

  • Oracle の B*Tree インデックスの内部構造についてお勉強中(その1)

    仕事のデータベース一式のリース切れ間近ということで、リース延長で耐えることができるのか、それともシステム更改が必要なのかを見極めるため、最近はデータベース周りのチューニングばかりやってます。 当初設計時に、5年間持つ設計をしたのですが、流石に5年目にもなると予定とはそれなりに乖離が発生するものです。テーブル&インデックス設計をユーザ向けの処理をとにかく高速に処理できるように設計したので、ユーザ向けの処理は速度的に全然大丈夫なのですが、データの肥大化によるバッチ処理のパフォーマンス劣化が顕著です。単純にストレージと CPU パワーが足りていないのでしょう。 しかしながらチューニングの余地はまだまだ十分にありそうです。バッチ向けの最適化を図ることにしました。うまくいけば来年度どころか、後数年はリース延長で延命できるかもしれません。 今回実施したチューニングの1つのポイントとして、バッチ処理向

  • MapReduce - naoyaのはてなダイアリー

    "MapReduce" は Google のバックエンドで利用されている並列計算システムです。検索エンジンのインデックス作成をはじめとする、大規模な入力データに対するバッチ処理を想定して作られたシステムです。 MapReduce の面白いところは、map() と reduce() という二つの関数の組み合わせを定義するだけで、大規模データに対する様々な計算問題を解決することができる点です。 MapReduce の計算モデル map() にはその計算問題のデータとしての key-value ペアが次々に渡ってきます。map() では key-value 値のペアを異なる複数の key-value ペアに変換します。reduce() には、map() で作った key-value ペアを同一の key で束ねたものが順番に渡ってきます。その key-values ペアを任意の形式に変換すること

    MapReduce - naoyaのはてなダイアリー
  • 1