タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとmathとaiに関するjjzakのブックマーク (2)

  • 「言語処理のための機械学習入門」を参考に各種モデルに対するEMアルゴリズムを実装したよ - nokunoの日記

    Amazonにもレビューを書いたのですが、高村さんの「言語処理のための機械学習入門」を読みました。実はこのを読むのは2回目で、1回目はドラフト版のレビューをさせていただく機会があったのですが、そのときは「言語処理研究者のための機械学習入門」というタイトルで、ちょっと敷居が高いのではないかとコメントしたら「研究者」の部分が削られたという経緯があったりしました。 それはともかくとして、以前読んだときは時間もなくて実装までする暇はなかったのですが、今度はもうちょっとじっくり読みたいなということで、このブログに書いてみようと思います。EMアルゴリズムは教師なし学習を確率モデルと最尤推定でやろうとするときに必ず出てくる手法で、隠れ変数や欠損値を含む色々なモデルに適用できる汎用的なフレームワークになっています。一般的には混合ガウス分布の場合をまず説明して、それがk-means法の一般化した形になって

  • Support Vector Machine

    人間には卓越した学習能力が備わっている.人間は目で見たり,耳で聞いたものが何であるかをいとも簡単に認識できる.また,未知の環境に適応する能力も優れている.それに対し,コンピュータは,与えられた指示(プログラム)どおりに高速に計算を行う能力においては優れているが,学習能力という点においては,人間とは比較にならない. そこで,人間のような学習能力をもった機械(モデル)を作るための学習理論が発達してきた.その代表的な成果の1つとして,多層パーセプトロンが挙げられる.多層パーセプトロンは1980年代に開発され,これまで多方面に応用されてきた.しかし,望ましくない局所最適解への収束,中間層の素子数の選択など,いくつかの問題点がある. サポートベクターマシン(Support Vector Machine:SVM) は,このような問題を解決した学習機械として知られている.サポートベクターマシンとは,1

  • 1