タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとnlpとaiに関するjjzakのブックマーク (2)

  • 独断と偏見によるノンパラ入門 - 木曜不足

    「ノンパラメトリック」って言うくらいだからパラメータ無いんかと思ってたら、パラメータめっちゃあるし。 機械学習のネーミングのひどさはこれに始まった話じゃあないけど、それにしたって。 ノンパラの一番素朴なやつ( K-means とか)は当にパラメータ無くてデータだけだから納得なんだけど、だんだん欲が出てパラメータ足しちゃったり派生させちゃったりしてるうちに、よくわかんなくなってきちゃったんだろうかねえ。まったく。 どれどれ、と英語Wikipedia の "Non-parametric statistics" を見たら、なんか意味が4種類くらい書いてあるし。じゃあ名前分けろよ。 en.wikipedia.org とりあえずここで言う「ノンパラ」とは、変数の個数決めなくていい「分布の分布」なメタっぽいやつのこと。つまりディリクレ過程とか、ディリクレ過程とか、そこらへん。 「あー、ノンパラベ

    独断と偏見によるノンパラ入門 - 木曜不足
  • [NLP][機械学習] 言語モデル覚え書き - tsubosakaの日記

    この文章について 最近言語モデル方面にも少し興味があるので自分の知識を整理する意味で書いてみた。NLPは専門ではないので、おかしなことを書いてある可能性がありますがその場合はご指摘ください。 文章ではn-gramモデル、単語の出現確率がn-1個前の単語のみに依存するモデルを考える。 問題 who is * という文が与えられたときに*にくる文字の確率を求めることを考える。この場合だと*には例えばheが当てはまるかもしれないが, isが入ることはまずなさそうに思える。このことは文法的にも説明ができると思うが、文法のルールを作るのは大変だし、文法的に正しい単語の中でどれが出やすいかということはできない。 一方で機械学習を使った言語モデルの文脈では文法的知識を余り持たず、与えられたコーパスから自動的に出やすい単語/表現を学習する方針をとる。 最尤推定 一番簡単なモデルとしては最尤推定を使うもの

    [NLP][機械学習] 言語モデル覚え書き - tsubosakaの日記
  • 1