Code Archive Skip to content Google About Google Privacy Terms
ICML2008で発表されたDredzeらのConfidence Weighted Linear Classificationを読んだ。これは線形分類器を学習する新しいオンライン学習型アルゴリズムの提案である。すぐに使える実装としてはOLLというオープンソースのライブラリがあり、実際に良い実験結果が出ているようだ。 Confidence Weightedのアイデアは、よく出てくる素性に関しては一回の更新における数値の変更量を減らしてやり、あまり出てこない素性に関しては、一回の更新でぐっと値を変更してやろう、というものである。 こういった新しい更新方法を考案した動機を明らかにするために、Perceptronを使って、単語を素性として評判分類の学習を行うような問題を考えてみる。肯定的な評価のサンプルとして"I liked this author."というものがあったとすると、このサンプルの分類
2. 自己紹介:徳永 拓之 ● twitter id:tkng ● (株) Preferred Infrastructure 勤務 ● 守備範囲:レコメンド・NLPなど ● カレーを食べるのが趣味 ● 上野デリーのコルマカレーが好きです ● 早売りの週刊少年ジャンプを読むのも好き 3. 宣伝:NLP2011で発表します C4-6 日本語かな漢字変換における識別モデル の適用とその考察 ○徳永拓之, 岡野原大輔 (PFI) 3月10日(木) 13:00-15:30 (A1-201教室) ● 今日の発表でここが一番NLPっぽい 4. 発表の概要 ● ランク学習とは ● Confidence Weightedとは ● Confidence Weightedによるランク学習 中身の薄い発表なのでゆったりと リラックスした気持ちで聞くのが オススメ!
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く