タグ

y-combinatorとalgorithmに関するjjzakのブックマーク (5)

  • さあ、Yコンビネータ(不動点演算子)を使おう! - よくわかりません

    前回、おとうさんにもわかるYコンビネータ!(絵解き解説編) - よくわかりませんというエントリで、Yコンビネータ(不動点演算子)と再帰の絵解き解説をしました。 Yコンビネータ自身は、結局のところ再帰を産み出してくれるだけです。関数(正確にはλという単純な文字列変換ルール)だけで出来て、プログラミングに関するいろんな原理の研究を可能にするのが凄い訳です。その辺のさわりを、きしださんが解説されています。しかし、単なる再帰なら、実際のプログラミングではYコンビネータなんて使わなくても出来ます。 じゃあ、Yコンビネータとか不動点とかは、偉い学者さんとかが研究に使えばいいもので、普通のプログラマには何の意味もないモノなのでしょうか? というわけで、今回はポジティブに、Yコンビネータや不動点で出てくる考え方を、理論だけじゃなく、実際のプログラミングに応用する例を見てみましょう。 今回、プログラムの例を

  • おとうさんにもわかるYコンビネータ!(絵解き解説編) - よくわかりません

    先日YコンビネータのきしださんのYコンビネータのエントリが話題になっていました。 ずいぶん日にちが経ってしまいましたが、自分も、自分なりにYコンビネータのあたりを絵解きで整理してみたいと思います。きしださんのエントリタイトル*1に引っ掛けて、目標として、自分の父親(非プログラマ。その辺のおっさん)でも解る内容を目指します。 なぜ不動点演算子というのか、不動点だったらなぜ再帰なのか、この辺りも含めて、実感を持って納得できればいいなと思います。 きしださんのエントリのおさらい 題の前に、きしださんのエントリをおさらいしておきます。 Yコンビネータはただのオモチャじゃないんだよ 関数だけで色んな事が出来る 条件分岐をする関数ってのもある。 再帰(ループ)を作れる関数もある。←これがYコンビネータ。 数値も関数で表現できる。 つまり、関数だけで、条件分岐も、再帰(ループ)も、数値も作れちゃう!!

    おとうさんにもわかるYコンビネータ!(絵解き解説編) - よくわかりません
  • Rubyのある風景 - Y Combinator

    再帰的な関数を作るときに関数に名前をつけずに定義するにはどうしたらいいのかというのが、Y Combinatorの中心的な話題です。 まずは、再帰の定番、階乗を計算する関数に登場願いましょう。 fact = lambda{|n| if n < 2 1 else n * fact[n - 1] end } puts fact[10] ここからfactという名前を取り除こうというわけですね。 最終目標は、以下のようにして階乗を計算する関数を定義することができるようになることです。 fact = y[lambda{|h| lambda{|n| if n < 2 1 else n * h[n - 1] end } ] ) puts fact[10] ここで出てきたyが、Y Combinatorと呼ばれるものです。 見やすさの為に、factという名前をつけましたが、関数を定義するところではfact

  • Rubyのある風景 - Y+Combinator+2

    以前取り上げたY Combinatorですが、何故"Y"なのかと思って調べてみたところ、どうやら"To Mock a Mockkingbird" がもとになっているようです。 このでは色々な鳥の名前を各ラムダ式に割り当てて、組み合わせ理論(Combinatory Logic)を解説しています。 ちなみにYは"Why Bird (aka Sage Bird)"だそうで。 さて、組み合わせ理論の有名な話として、 K = λxy.x S = λxyz.xz(yz) の二つを用いることで、チューリングマシンと等価な計算能力が得られるということが知られています(ということは、この二つさえあれば、今一般に使われているプログラムは全て記述できるわけですね)。 例えば、恒等写像I(λx.x)は SKK = (λxyz.xz(yz))(λxy.x)(λxy.x) = (λyz.(λxy.x)z(yz))(

  • おとうさん、ぼくにもYコンビネータがわかりましたよ! - 2009-04-09 - きしだのはてな

    やっと、Yコンビネータが何を意味するものなのか、どういう意義があるのかがわかりました。 名前を使わず再帰ができますよ!というだけのものじゃなかったのですね。 まずλありき 関数の話をしたいのです。 そのとき、いちいち hoge(x) = x * 2 としてhogeを・・・、とか名前をつけて話を進めるのがめんどうなので、関数を値としてあらわすと便利ということで、λという値を定義するのです。 そうすると、上のhoge関数なんかはλ(x)(x*2)などとあらわせますが、引数をあらわすのに()を使うといろいろまぎらわしいので、 λx.x*2 のように表記します。 というのがλ。 このとき、λになにかわたされたら、引数としてあらわされる部分を単純におきかえます。 (λx.x*2)y とあったら、xの部分をyでおきかえて (λx.x*2)y → y * 2 となります。λの引数部分を与えられた引数で置

    おとうさん、ぼくにもYコンビネータがわかりましたよ! - 2009-04-09 - きしだのはてな
  • 1