タグ

algorithmに関するkabakiyoのブックマーク (18)

  • C++: 編集距離を求めるアルゴリズム

    編集距離(edit distance)とは二つの文字列がどの程度異なっているかを示す数値であり、レーベンシュタイン距離(Levenshtein distance)を指すことが多い。文字の挿入、削除、置換それぞれを一つの操作として必要な操作の最小数を求めるものだ。例えば、kittenとsittingの編集距離を求める場合、下記のように3回の操作でkittenをsittingに変更できるので編集距離は3となる。 1. sitten (k を s に置換) 2. sittin (e を i に置換) 3. sitting (g を挿入) そこで今回は編集距離を求める複数のアルゴリズムについてC++で実装してみた。 動的計画法 編集距離を求めるもっとも一般的なアルゴリズムは、動的計画法(dynamic programming)だろう。計算時間はO(mn)であり、手軽だ。C++で書いたコードを下に示

  • Inside Tokyo Cabinet その壱 - mixi engineer blog

    約半年間の沈黙を破ってOSSの世界に戻ってきつつあるmikioです。先日、Tokyo Cabinet(以下「TC」と呼びます)というデータベースライブラリをリリースしました。今回から数回に分けて、TCの設計と苦労話について連載してみます。 DBMとは TCは、いわゆるDBMの系譜のデータベースライブラリで、単純なハッシュテーブルをファイル上で永続化するだけの機能を提供します。DBMはAT&Tの古代UNIXの時代から受け継がれる伝統芸能なのですが、私はそういう枯れた技術が大好きなのです。 プログラマの皆さんは、PerlRubyではハッシュ(連想配列)と呼ばれ、JavaC++ではmapと呼ばれるような、何らかのキーに関連づけてなんらかの値を記録するデータ構造って実によく使いますよね。例えばmixiでは、ユーザアカウントに関連する情報(名前とかニックネームとか)は、ユーザIDをキーにしたハッ

    Inside Tokyo Cabinet その壱 - mixi engineer blog
  • 形態素解析 - Wikipedia

    形態素解析(けいたいそかいせき、(英: morphological analysis)は自然言語の文字列を形態素列へ変換することである[1]。 形態素解析とは、対象言語の文法や単語の品詞等の情報[注 1]にもとづき、文法的な情報の注記の無い自然言語のテキストデータ(文)を単語の列に分割し、各単語の品詞や活用などを判別することで形態素(おおまかにいえば、言語で意味を持つ最小単位)の列を得る作業である[1]。 自然言語処理の分野における主要なテーマのひとつであり、機械翻訳やかな漢字変換など応用も多い(もちろん、かな漢字変換の場合は入力が通常の文と異なり全てひらがなであり、その先に続く文章もその時点では存在しないなどの理由で、内容は機械翻訳の場合とは異なったものになる)。 もっぱら言語学的な観点を主として言語学で研究されている文法にもとづく解析もあれば、コンピュータ上の自然言語処理としてコンピュ

    形態素解析 - Wikipedia
  • algorithm - 最近点検索をkd-treeで : 404 Blog Not Found

    2009年04月30日01:00 カテゴリMathLightweight Languages algorithm - 最近点検索をkd-treeで というわけで、kd-treeによる検索も実装してみました。 はてなブックマーク - ototoiのブックマーク データ数が少ない場合、この全検索が高速。ただデータが多くなってくるとkd-treeがいいと思う。点ならば配列をソートするだけで実現できる。 以下のデモでは、単にkd-treeによる検索だけではなく、kd-tree構築の速度と、総当たりの場合の速度の比較もできるようにしてあります。10,000点ぐらいだと、その差を顕著に感じることが出来るでしょう。100,000点ぐらいあると、感動的なほど差が出ます。それだけあってもkd-treeの方はほぼ1ms以内に検索が終わるのですから(ただしこの場合、デモの実行に合計10秒以上かかるので注意!)。

    algorithm - 最近点検索をkd-treeで : 404 Blog Not Found
  • Locality Sensitive Hashing (LSH) Home Page

    LSH Algorithm and Implementation (E2LSH) Locality-Sensitive Hashing (LSH) is an algorithm for solving the approximate or exact Near Neighbor Search in high dimensional spaces. This webpage links to the newest LSH algorithms in Euclidean and Hamming spaces, as well as the E2LSH package, an implementation of an early practical LSH algorithm. Check out also the 2015--2016 FALCONN package, which is a

  • algorithm - correction - 最近点検索 : 404 Blog Not Found

    2009年04月29日07:45 カテゴリMathアルゴリズム百選 algorithm - correction - 最近点検索 これ、「素直な解答」の方が間違っている。 404 Blog Not Found:algorithm - 最近点検索 ぬじゃらだーさんのコメント このアルゴリズムって点が原点から等距離に分布している場合はまったく働かないですよね。 その通り。その一方で、「近い順にソート」は合っている。しかしこれだとO(n log n)。 TSさんのコメント もとの最近点探索の問題を解くには、点集合Pのボロノイ図データを作っておいて問い合わせに答えるのが正攻法ではないでしょうか これだと確かに高速。点がすべて格子点上にある場合(たとえばビットマップ)、ボロノイ図があらかじめ用意してある場合はO(1)で判定できる。たとえば各格子点にあらかじめどの点が一番近いかを記録しておき、それを読

    algorithm - correction - 最近点検索 : 404 Blog Not Found
  • algorithm - 最近点検索 : 404 Blog Not Found

    2009年04月28日23:30 カテゴリMathLightweight Languages algorithm - 最近点検索 後のデザートにちょうどよいサイズの問題。 二次元の値(x, y)をもつ集合P から任意の点p の近似点を検索するアルゴリズムを考えています 高速、低負荷で検索するにはどうしたらいいでしょうか? 条件は次の通りです .. - 人力検索はてな 条件は次の通りです 集合Pはあらかじめ、任意の順番でソートしておける 点pの近似点にする条件は、margin範囲内で一番近いものとするが、margin値はそのときどきで変わる まずは素直に答えを。 点集合は、あらかじめ原点からの距離順にソートしておく。 その集合を、検索したい点の原点からの距離を使って二分探索(binary search)する。 二分探索は exact match でなくてもいいので、この方法でOKです。O(

    algorithm - 最近点検索 : 404 Blog Not Found
  • はてなブックマークFirefox拡張, JavaScript で IS 法 による Suffix Array 構築 - naoyaのはてなダイアリー

    昨日、はてなブックマークFirefox拡張をリリースしました。おかげさまでベータ版からダウンロード数は累積で1万ダウンロードを突破し、アクティブユーザー数も伸びています。 はてなブックマークFirefox拡張で新しいインターネットを体験しよう http://b.hatena.ne.jp/guide/firefox_addon 開発者の id:secondlife が g:subtech:id:secondlife:20090415:1239804170 で技術的な側面からのちょっとした TIPS なども紹介していますので、興味のある方はご一読ください。 検索では思いのほか SQLite の like 検索が高速なのに驚いた。はてブ検索では、検索ワードから URL, Title, コメント にマッチしたものを表示していて、それ専用の search_data だかかんらかの検索用カラムがある。

    はてなブックマークFirefox拡張, JavaScript で IS 法 による Suffix Array 構築 - naoyaのはてなダイアリー
  • 仮想関数テーブル - Wikipedia

    仮想関数テーブル(かそうかんすうテーブル、英: virtual method table)あるいはvtableは、プログラミング言語の実装において動的なポリモーフィズム、すなわち実行時のメソッドの束縛を実現するために用いられる機構である。 あるプログラムが、継承関係にある複数のクラス(データ型)を持っているとする。たとえばスーパークラス Cat と二つのサブクラス HouseCat と Lion において、クラス Cat が speak という仮想関数(仮想メソッド)を定義しており、サブクラスは適切な実装(鳴く、吠えるといった)を行うものとする。 プログラムがspeakメソッドをCatへのポインタp(Cat クラスおよび Cat の任意のサブクラスを指すことができる)に対して呼び出すと、実行環境は、pが指す実際のオブジェクトの種類(型)に応じてどの実装を呼び出すかを決定しなければならない。

  • B木 - naoyaのはてなダイアリー

    昨年から続いているアルゴリズムイントロダクション輪講も、早いもので次は18章です。18章のテーマはB木(B Tree, Bツリー) です。B木はマルチウェイ平衡木(多分木による平衡木)で、データベースやファイルシステムなどでも良く使われる重要なデータ構造です。B木は一つの木の頂点にぶら下がる枝の数の下限と上限を設けた上、常に平衡木であることを制約としたデータ構造になります。 輪講の予習がてら、B木を Python で実装してみました。ソースコードを最後に掲載します。以下は B木に関する考察です。 B木がなぜ重要なのか B木が重要なのは、B木(の変種であるB+木*1など)が二次記憶装置上で効率良く操作できるように設計されたデータ構造だからです。データベースを利用するウェブアプリケーションなど、二次記憶(ハードディスク)上の大量のデータを扱うソフトウェアを運用した経験がある方なら、いかにディ

    B木 - naoyaのはてなダイアリー
  • 最長共通部分列問題 (Longest Common Subsequence) - naoyaのはてなダイアリー

    部分列 (Subsequence) は系列のいくつかの要素を取り出してできた系列のことです。二つの系列の共通の部分列を共通部分列 (Common Subsecuence)と言います。共通部分列のうち、もっとも長いものを最長共通部分列 (Longest Common Subsequence, LCS) と言います。 X = <A, B, C, B, D, A, B> Y = <B, D, C, A, B, A> という二つの系列から得られる LCS は <B, C, B, A> で、その長さは 4 です。長さ 2 の<B, D> の長さ 3 の <A, B, A> なども共通部分列ですが、最長ではないのでこれらは LCS ではありません。また、LCS は最長であれば位置はどこでも良いので、この場合 <B, D, A, B> も LCS です。 LCS は動的計画法 (Dynamic Prog

    最長共通部分列問題 (Longest Common Subsequence) - naoyaのはてなダイアリー
  • 編集距離 (Levenshtein Distance) - naoyaのはてなダイアリー

    昨日 最長共通部分列問題 (LCS) について触れました。ついでなので編集距離のアルゴリズムについても整理してみます。 編集距離 (レーベンシュタイン距離, Levenshtein Distance) は二つの文字列の類似度 (異なり具合) を定量化するための数値です。文字の挿入/削除/置換で一方を他方に変形するための最小手順回数を数えたものが編集距離です。 例えば 伊藤直哉と伊藤直也 … 編集距離 1 伊藤直と伊藤直也 … 編集距離 1 佐藤直哉と伊藤直也 … 編集距離 2 佐藤B作と伊藤直也 … 編集距離 3 という具合です。 編集距離はスペルミスを修正するプログラムや、近似文字列照合 (検索対象の文書から入力文字にある程度近い部分文字列を探し出す全文検索) などで利用されます。 編集距離算出は動的計画法 (Dynamic Programming, DP) で計算することができることが

    編集距離 (Levenshtein Distance) - naoyaのはてなダイアリー
  • DO++ : 透過的データ圧縮

    可逆データ圧縮分野で、現在研究が盛んな分野の一つが、データを圧縮した状態のまま定数時間でランダムアクセスをサポートするデータ圧縮方式です(word RAMモデルでO(log n)サイズの復元が定数時間)。 これは、データをあたかも圧縮していないかのように扱えるため、透過的データ圧縮/構造と呼ばれています(英語だとまだ決まってない?)。 例えば1GBのデータを圧縮した状態で、途中300MB目から4Byteだけ復元しようというのが定数時間で実現できるわけです。これは理論的にもかなり強いことをいっていて,例えば今あるデータ構造やアルゴリズムが、O(T)時間である問題を解けるというのがあったら、それを全く同じO(T)時間のままデータ構造を圧縮し作業領域量を減らすことができます (一応データ構造に対し読み込み操作しか無い場合。書き込みもある場合はまたちょっと面倒になる) このデータを圧縮したまま扱う

    DO++ : 透過的データ圧縮
  • ラビン-カープ文字列検索アルゴリズム - Wikipedia

    ラビン-カープ文字列検索アルゴリズム(英: Rabin-Karp string search algorithm)は、マイケル・ラビンとリチャード・カープが開発した、ハッシュ関数を利用してテキストからパターン(サブ文字列)を探す文字列検索アルゴリズムの一種[1][2]。1つのパターンの検索にはあまり用いられないが、理論的には重要であり、複数パターンの検索には効果的である。テキストの文字数が n、パターンの文字数が m とした場合、平均および最良の実行時間はO(n)だが、ごくまれに最悪性能として O(nm)となる(広く用いられないのはそのため)。しかし、k個の文字列のいずれかにマッチする部分を検索するのに要する時間は k によらず平均で O(n) となるという独特の利点を持つ。以下、単にラビン-カープまたはラビン-カープ法と略記することがある。 ラビン-カープの単純な応用例として、盗作の検出

  • HITS, 主成分分析, SVD - naoyaのはてなダイアリー

    ウェブグラフのリンク解析によるページの評価と言えば PageRank が著名ですが、もうひとつ Jon Kleinberg による HITS (Hyperlink-induced topic search)も有名です。最初の論文 Authoritative Sources in a Hyperlinked Environment は 1999年です。IIR の 21章で、この PageRank と HITS についての解説がありました。 HITS HITS はウェブページの評価に二つの軸を用います。一つが authority スコア、もう一つが hub スコアです。 例えば「Perl の情報が欲しい」という検索要求に対しては CPAN や 開発者である Larry Wall のホームページなどが重要度の高いページかと思います。これらのページは「Perl に関して信頼できる情報源」ということ

    HITS, 主成分分析, SVD - naoyaのはてなダイアリー
  • スペクトラルクラスタリングは次元圧縮しながらKmeansする手法 - 武蔵野日記

    機械学習系のエントリを続けて書いてみる。クラスタリングについて知らない人は以下のエントリ読んでもちんぷんかんぷんだと思うので、クラスタリングという概念については知っているものとする。 それで、今日はスペクトラルクラスタリングの話。自然言語処理以外でも利用されているが、これはグラフのスペクトルに基づくクラスタリングの手法で、半教師あり学習への拡張がやりやすいのが利点。なにをするかというとクラスタリングをグラフの分割問題(疎であるエッジをカット)に帰着して解く手法で、どういうふうに分割するかによって Normalized cut (Ncut) とか Min-max cut (Mcut) とかいろいろある。 完全にグラフが分割できる場合はこれでめでたしめでたしなのだが、実世界のグラフはそんな簡単に切れないことが往々にしてある。それで近似してこのグラフ分割問題を解くのだが、Normalized c

    スペクトラルクラスタリングは次元圧縮しながらKmeansする手法 - 武蔵野日記
  • そろそろChaIMEについて一言いっておくか - 射撃しつつ前転 改

    2月は割とガンガンと開発をしてきたのだが、3月に入ってさすがにエネルギーが切れてきたので、一旦、気分転換にエントリに書いてみることにする。 ChaIMEというのは主に研究目的のかな漢字変換エンジンである。奈良先の小町さん(id:mamoruk)がメインで開発していて、自分もここしばらくはアクティブに開発している。こちらでデモを試すことができる。ChaIMEの特徴はひたすらに統計情報で変換をするところなのだが、今回はそういった話ではなく、もうちょっと一般的なかな漢字変換についての話をダラダラと書いてみようと思う。 デモを見て分かる通り、今までのChaIMEはステートレスで、ひらがな列を入力に対してそれっぽい変換候補を複数出力してさぁ選べ、という形だった。文節境界を変更したり、文節毎に候補を出すことはできない。これは単に実装コストの問題で、研究用途で実験をする際には文節境界を変更してどうたらこ

    そろそろChaIMEについて一言いっておくか - 射撃しつつ前転 改
  • 1