タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとAlgorithmとdevに関するko-ya-maのブックマーク (47)

  • 『世界でもっとも強力な9のアルゴリズム』で頭を鍛える - HONZ

    著者の定義によると、アルゴリズムとは「問題を解決するために必要な手順を正確に規定したレシピ」である。コンピュータ・サイエンスを専門とする大学教授の手による書は、現在当たり前のように使われている偉大なコンピュータ・アルゴリズムがなぜ必要とされたのか、どのように考え出されたか、そして、それが実際にどのような仕組みで動いているのかを教えてくれる。 このように紹介すると、コンピュータやプログラミングが苦手な人は手が遠のいてしまうかもしれないが、どうかご安心を。書を楽しむのに、コンピュータプログラミングやコンピュータ科学の知識は必要ない。必要なのはじっくりと考えることだけだ。 一口にサイエンスといっても面白いポイントはそれぞれに異なるが、書の面白みは間違いなく、過去の偉人たちの難問への挑戦を疑似体験できるところにある。その面白みを満喫するためにも、頭から煙を出しながらじっくりと考えながら読む

    『世界でもっとも強力な9のアルゴリズム』で頭を鍛える - HONZ
    ko-ya-ma
    ko-ya-ma 2012/08/03
    面白そうな本。
  • アルゴリズムの紹介

     ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意して

    ko-ya-ma
    ko-ya-ma 2011/12/07
    定番のアルゴリズム
  • 機械学習 はじめよう 記事一覧 | gihyo.jp

    運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    機械学習 はじめよう 記事一覧 | gihyo.jp
  • データマイニングで使われるトップ10アルゴリズム - 『企業成長の方程式 ― AIDグロースコミットによる成長戦略』

    2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C

    データマイニングで使われるトップ10アルゴリズム - 『企業成長の方程式 ― AIDグロースコミットによる成長戦略』
  • P2Pの専門知識ゼロから独自DHTを実装評価するまでの学習方法と参考資料まとめ - 情報科学屋さんを目指す人のメモ(FC2ブログ版)

    何かのやり方や、問題の解決方法をどんどんメモするブログ。そんな大学院生の活動「キャッシュ」に誰かがヒットしてくれることを祈って。 P2P、特にDHTの前提知識が無い状態から、オリジナルDHTアルゴリズムを実装・評価できるようになるまでの学習方法と参考資料をまとめました。 基的なアルゴリズムの仕組みから、実装評価に用いるツールキットの使い方までを短期間で学習することが出来ます。 「P2Pに関する卒論を書こうと思っている人」や「P2Pアプリケーションの開発前に、アルゴリズムをテストしたい人」、「なんとなくP2Pアルゴリズムに興味が出た人」などにぴったりだと思います。また、研究室での後輩教育用資料にするのも良いと思います。実際に使いましたし。 ここで紹介する資料一覧は以下の通りです。 資料1:「ChordアルゴリズムによるDHT入門」 資料1ーオプション1:「DHTアルゴリズムSymphony

  • 頻出典型アルゴリズムの演習問題としてよさげなやつ - kyuridenamidaのチラ裏

    効率的な別解とか存在する問題もあるけど演習によさそうなやつをピックアップ。そのアルゴリズムじゃないと解けないわけではないって問題も多いので注意。(ただ演習するのには都合が良いかなと)※個人的難易度をつけてみました。とても主観的な難易度付けなので気にせず解いてみてください。深さ優先探索・Balls[☆]・Sum of Integers[☆]・The Number of Island[☆]・Block[★]幅優先探索・Mysterious Worm[★]・Cheese[★]・Seven Puzzle[★☆]・Stray Twins[★★]・Deven-Eleven[★★]・Summer of Phyonkichi[★★☆]ワーシャルフロイド法(For 全点対最短路問題)・Traveling Alone: One-way Ticket of Youth[★]・A reward for a Car

  • 統計的に正しいランキングを行う方法 - Hello, world! - s21g

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ポジティブ/ネガティブ投票による正しいランキング方法が以下の記事で紹介されています。 How Not To Sort By Average Rating この計算方法では、投票数が少ない場合には分散が大きく不正確な評価で、 投票数が多くなるにつれて分散が小さく正確な評価が得られているという事を考慮しています。以下数式 これはScoreの信頼区間を表しています。 この信頼区間の下界をランキングのスコアにすれば良い事になります。 ここで、は、 です。全体に占めるポジティブ投票数の割合ですね。 は標準正規分布上の 信頼区間の有意確率です。 さて、五段階評価によるRatingに同様のテクニックを適用する場合はどうしたらいいでしょうか