タグ

tipsとstatisticsに関するko-ya-maのブックマーク (3)

  • 統計的因果推論のためのPythonライブラリDoWhyについて解説:なにができて、なにに注意すべきか - Unboundedly

    機械学習など主に予測を目的とした統計手法に強いイメージのPythonでしたが、統計的因果推論を行うためのライブラリ、“DoWhy”がついにリリースされました。 DoWhy | Making causal inference easy — DoWhy | Making Causal Inference Easy documentation これまで因果推論があまり浸透してこなかった*1データサイエンス界に新しい風が吹くのではと期待が高まります。 一方でこのパッケージが何を可能にし、逆に何ができないのかを理解しなければ、雑なデータ分析が増えて逆に有害なのではと思い、今回ブログを書くことにしました。 先に言っておくと、私自身はPythonをメインに使っているわけではありません(使ったことはあるので一応コードを読んで何が起こっているかくらいはわかります)。したがって記事の目的は、DoWhyライブ

    統計的因果推論のためのPythonライブラリDoWhyについて解説:なにができて、なにに注意すべきか - Unboundedly
  • ダメな統計学:目次|Colorless Green Ideas

    2017年1月20日追記:『ダメな統計学――悲惨なほど完全なる手引書』というが出版されることになった。このは、ここに掲載されているウェブ版の『ダメな統計学』に大幅に加筆したものだ。ウェブ版の『ダメな統計学』を読んで興味を持った方は、書籍となった『ダメな統計学』をぜひ読んでいただければと思う。書籍版の詳細については「『ダメな統計学――悲惨なほど完全なる手引書』の翻訳出版」という記事をご参照願いたい。 ここに公開する『ダメな統計学』は、アレックス・ラインハート (Alex Reinhart) 氏が書いたStatistics Done Wrongの全訳である。この文章は全部で13章から構成されている。詳しくは以下の目次を参照されたい。 はじめに データ分析入門 検定力と検定力の足りない統計 擬似反復:データを賢く選べ p値と基準率の誤り 有意であるかないかの違いが有意差でない場合 停止規則と

    ダメな統計学:目次|Colorless Green Ideas
  • Optimizelyを使ってクビになりかけたワケ ~統計学が苦手なマーケターへの薦め~ | POSTD

    (訳者注: 検定手法について、この記事には一部内容が古い部分があります。Optimizelyは現在、両側検定を採用し、独自開発したより精度の高い統計手法(Stats Engine)でテスト結果を表示しています。Stats Engineに関する記事: 日語 ・ 英語 ) 私たちがSumAllでA/Bテストを一斉にスタートさせて6ヶ月が経ち、あまりよくない結末を迎えました。それは勝算があるとした結果のほとんどが新規ユーザーの獲得改善にはつながらなかったことです。それどころか、私たちは失敗したのです。そして私の一番の責任はユーザー獲得の増加であるということを考えると、当に最悪の状況でした。私にとっても、私のキャリアにとっても、そしてSumAllにとっても。 過去に A/BテストとWebサイト・パーソナライゼーションの会社 に勤めていた経験から(はっきり言うとMonetateはOptimize

    Optimizelyを使ってクビになりかけたワケ ~統計学が苦手なマーケターへの薦め~ | POSTD
  • 1