Faissを使ったFAQ検索システムの構築Facebookが開発した効率的な近似最近傍検索ライブラリFaissを使用することで、FAQ検索システムを構築することができます。 まずは、SQLiteデータベースを準備し、FAQの本文とそのIDを保存します。次に、sentence-transformersを使用して各FAQの本文の埋め込みベクトルを計算し、そのベクトルをFaissインデックスに追加します。新しいクエリが入力されたときは、sentence-transformersを使用してクエリの埋め込みベクトルを計算し、Faissインデックスを使用して、クエリの埋め込みベクトルに最も類似したFAQの埋め込みベクトルを検索します。 検索結果は、FAQのIDのリストとして返され、最後に返されたIDを使用して、SQLiteデータベースから関連するFAQの本文を取得し、検索結果としてユーザーに表示されま
Faiss contains several methods for similarity search. It assumes that the instances are represented as vectors and are identified by an integer, and that the vectors can be compared with L2 (Euclidean) distances or dot products. Vectors that are similar to a query vector are those that have the lowest L2 distance or the highest dot product with the query vector. It also supports cosine similarity,
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く