タグ

Programmingとmlに関するkyo_agoのブックマーク (3)

  • 最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング

    東京大学 松尾研究室が主催する深層強化学習サマースクールの講義で今井が使用した資料の公開版です. 強化学習の基礎的な概念や理論から最新の深層強化学習アルゴリズムまで解説しています.巻末には強化学習を勉強するにあたって有用な他資料への案内も載せました. 主に以下のような強化学習の概念やアルゴリズムの紹介をしています. ・マルコフ決定過程 ・ベルマン方程式 ・モデルフリー強化学習 ・モデルベース強化学習 ・TD学習 ・Q学習 ・SARSA ・適格度トレース ・関数近似 ・方策勾配法 ・方策勾配定理 ・DPG ・DDPG ・TRPO ・PPO ・SAC ・Actor-Critic ・DQN(Deep Q-Network) ・経験再生 ・Double DQN ・Prioritized Experience Replay ・Dueling Network ・Categorical DQN ・Nois

    最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
  • 勾配降下法の最適化アルゴリズムを概観する | POSTD

    (編注:2020/10/01、2016/07/29、いただいたフィードバックをもとに記事を修正いたしました。) 目次: さまざまな勾配降下法 バッチ勾配降下法 確率的勾配降下法 ミニバッチ勾配降下法 課題 勾配降下法を最適化するアルゴリズム Momentum(慣性) Nesterovの加速勾配降下法 Adagrad Adadelta RMSprop Adam アルゴリズムの可視化 どのオプティマイザを選ぶべき? SGDの並列化と分散化 Hogwild! Downpour SGD SGDのための遅延耐性アルゴリズム TensorFlow Elastic Averaging SGD 最適化されたSGDに対する更なる戦略 シャッフル学習とカリキュラム学習 バッチ正規化 早期終了 勾配ノイズ 結論 参考文献 勾配降下法は、最適化のための最も知られたアルゴリズムの1つです。これまではニューラルネット

    勾配降下法の最適化アルゴリズムを概観する | POSTD
  • Haskell、Scala、ML、Scheme:あなたが次に学ぶ関数型言語 | POSTD

    (編注:2016/7/27、頂いたフィードバックを元に記事を修正いたしました。) 学生たちから、次に学ぶ言語はどれがいいのかとよく聞かれます。IT業界で働きたい人にお薦めするのは、現在盛んに使われている言語です。C++Java、C#はもちろん、PythonRubyPHPPerlなども挙げられるでしょう。 一方、向学のためという人や、学術研究や起業に関心がある人にとって、次の言語を選ぶ基準となるのは、就職に有利かではなく言語の表現力でしょう。学術研究や起業活動を行うには、プログラマとしての能力を何倍にも高める必要があります。そして、(おそらく)確立されたコードベースを扱った経験はないでしょうから、手元にあるタスクにとって最適な言語を自由に選ぶことができます。 この記事では、勉強に適したHaskell、Scala、ML、Schemeという4つの言語を、私の好きな特徴や参考資料のリストと

    Haskell、Scala、ML、Scheme:あなたが次に学ぶ関数型言語 | POSTD
  • 1