タグ

algorithmに関するlost_and_foundのブックマーク (17)

  • 最適化超入門

    SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜 6/10 (木) 9:30~10:40 講師:平川 翼 氏(中部大学) 概要: 深層強化学習はDeep Q-Network (DQN) の登場以降、様々なアプローチが提案されており、AlphaGoによる囲碁の攻略やロボットの自律制御などの様々な応用がなされています。チュートリアルでは、従来の強化学習の基的な考え方に触れ、深層学習を組み合わせた深層強化学習についての紹介を行います。また、時間の許す限り、最新の深層学習手法やAlphaGoの仕組み、深層強化学習の活用例を紹介します。

    最適化超入門
  • コンピュータを進化させてきた偉大なるアルゴリズムまとめ

    By Kai Schreiber IT技術の進化のスピードには目を見張るものがありますが、それを支えているのはアルゴリズムと呼ばれる処理方法(技術的アイデア)です。さまざまなアルゴリズムの中でも、コンピュータの進化に革命的な影響をもたらしたとされる偉大なアルゴリズムは以下の通りです。 Great Algorithms that Revolutionized Computing http://en.docsity.com/news/interesting-facts/great-algorithms-revolutionized-computing/ ◆ハフマン符号(圧縮アルゴリズム) Huffman coding(ハフマン符号)は、1951年にデービッド・ハフマン氏によって開発されたアルゴリズム。頻出頻度の大小によって対戦するトーナメントツリーを考えて、ブロックごとに0と1の符号をもたせる

    コンピュータを進化させてきた偉大なるアルゴリズムまとめ
  • 世界でもっとも強力な9つのアルゴリズム、読了。 - 未来のいつか/hyoshiokの日記

    世界でもっとも強力な9のアルゴリズムを読んだ。 コンピュータサイエンスの優れたアイデアを紹介している。それらは私たちの生活を変えた。世界を変えたにもかかわらず広くは知られていない。 偉大なアルゴリズムというものは何なのか?書はその偉大なアルゴリズムを次の基準で選定した。1)普通のコンピュータユーザが毎日使っているもの。2)現実世界の具体的な問題を解決するもの。3)コンピュータサイエンスの理論に関係のあるもの。 そのような基準から著者が選んだのが下記のアルゴリズムだ。 検索エンジンのインデキシング ページランク 公開鍵暗号 誤り訂正符号 パターン認識 データ圧縮 データベース デジタル署名 決定不能性 最初の二つのアルゴリズムのおかげでわたしたちは日々検索エンジンで有用な情報を入手できる。公開鍵暗号やデジタル署名のおかげで安全にインターネット上でクレジットカード情報などを交換できる。誤り訂

    世界でもっとも強力な9つのアルゴリズム、読了。 - 未来のいつか/hyoshiokの日記
  • 第4回 ネット書店が「おススメ」を選び出すロジックとは?:日経ビジネスオンライン

    ビジネスに直接役立つ統計解析の手法として、ビジネススクールでは「相関」を学びます。相関は、価格と販売数の相関関係、為替と株価の相関関係、身長と体重の相関関係など、ビジネスや経済、生物学から心理学まで幅広く使われます。 相関度の強さは、相関係数という数値で表され、-1~1の範囲に収まります。1に近いほど高い相関度があり、0に近ければ相関度は低く、-1に近づくほど逆相関にあるという考え方です。たとえば相関係数が0.8なら、高い相関と言えます。 2つの変数の相関がわかると、ビジネスに活かせます。為替とある企業の株価の相関関係が高いのであれば、トレーダーは為替の変動情報をもとに株式の売買を行えます。あるいは、特定の経済指標の変動と高い相関関係を示す銘柄の株式も存在します。統計情報からテクニカルな取引をする手法もあります。オンライン書店で使われるレコメンデーションも、相関を応用しています。 今回は、

    第4回 ネット書店が「おススメ」を選び出すロジックとは?:日経ビジネスオンライン
  • 接尾辞配列 - Wikipedia

    接尾辞配列(せつびじはいれつ)やサフィックス・アレイ(英: suffix array)とは、文字列の接尾辞(開始位置を異にし終端位置を元の文字列と同じくする部分文字列)の文字列中の開始位置を要素とする配列を、接尾辞に関して辞書順に並べ替えて得られる配列である。接尾辞木の配列版。主に文字列探索、全文検索などに利用される。1990年に Udi Manber と Gene Myers が発表した[1]。

  • Googleアルゴリズム200項目全てを特別公開 | フォーデザイン

    Googleアルゴリズムの200の要素を発見しましょう!(Let’s Try to Find All 200 Parameters in Google Algorithm) は2009年に書かれた記事ですが、パンダアップデートが適用された今現在(2011年4月)でも重要項目が多く書かれているもので。 多くはGoogleの特許(合衆国特許出願0050071741)に基づいていますが、筆者のアンが自身の解析結果や予測を盛り込んでいる事で、より実践に近い内容になっています。 SEO初心者の方は、これからのウェブ制作の軸に、SEOエキスパートの方はもう一度自身のサイトを見直す目次として確認してみてはいかがでしょうか。 ドメインに関する13要因 ドメイン年齢 ドメイン取得からの長さ ドメイン登録情報(Who is情報)の表示/非表示 ドメイン種類(サイトレベルドメイン(.com や co.uk) ト

    Googleアルゴリズム200項目全てを特別公開 | フォーデザイン
  • http://blog.moonshine-project.com/ja/?p=533

    lost_and_found
    lost_and_found 2010/07/02
    "NEON(ベクタ演算)を使ったiPhoneでの高速化の記事"
  • UAX #14: Unicode Line Breaking Algorithm

    Summary This annex presents the Unicode line breaking algorithm along with detailed descriptions of each of the character classes established by the Unicode line breaking property. The line breaking algorithm produces a set of "break opportunities", or positions that would be suitable for wrapping lines when preparing text for display. Status This document has been reviewed by Unicode members and

  • 知れば天国、知らねば地獄――「探索」虎の巻

    いよいよ今回から、具体的なアルゴリズムの紹介に入っていきます。今回は、プログラミングにおける重要な概念である「探索」について考えます。グラフに変換し、探索する、という流れを知るとともに、そのグラフを効率よく探索する方法について紹介します。 今後紹介していくアルゴリズムについて お待たせしました! 「最強最速アルゴリズマー養成講座」という連載タイトルのとおり、今回の連載からいよいよ具体的なアルゴリズムの紹介に入っていきたいと思います。 しかし、それを読んでいただく前に、1つ注意してもらいたいことがあります。連載第3回でもお伝えしたように、「問題を、既存の適当なアルゴリズムに当てはめる」という考え方は、非常に危険である、ということです。 筆者の経験上、TopCoderでRedCoder以上を目指すのであれば、回答時間短縮のために、いままでのパターンを利用するのも方法の1つなのですが、連載では

    知れば天国、知らねば地獄――「探索」虎の巻
  • アルゴリズムの紹介

     ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意して

  • オーダーを極める思考法

    プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。今回は、計算量のオーダーについて学びながら、TopCoderのMedium問題を考えてみましょう。 プログラムの実行時間 業務としてプログラミングをされている方には釈迦に説法かもしれませんが、プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。そしてこれは、TopCoderなどのコンテストでプログラムを組む際にもよく当てはまります。通常、こうしたことは感覚的に理解している方がほとんどだと思いますが、具体的にどれくらいのループを回すと何秒掛かる、といった基準を持っている人は少ないのではないでしょうか? 非常に基的なことですが、プログラムの実行時間に関して再確認しておきたいと思います。 TopCoderの制限に関して TopCoderでは、実行時間およびメモリ使

    オーダーを極める思考法
  • ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室

    ゲームの作り方とアルゴリズムをジャンル別にまとめてみました。ゲーム制作や、プログラミングの勉強用にご活用ください。言語別ゲームプログラミング制作講座一覧もあわせてお読みください。 リンク切れがおきていたものは、URLを表示しておくので、Internet Archiveなどでキャッシュを表示させてみてください。 RPG ゲームの乱数解析 乱数を利用した敵出現アルゴリズムの解説 各種ゲームプログラム解析 FF、ドラクエ、ロマサガのプログラムの解析。乱数の計算など ダメージ計算あれこれ(http://ysfactory.nobody.jp/ys/prg/calculation_public.html) ダメージの計算式 エンカウントについて考えてみる エンカウント(マップでの敵との遭遇)の処理方法いろいろ RPGの作り方 - ゲームヘル2000 RPGのアルゴリズム ドルアーガの塔 乱数の工夫の

    ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室
  • シムシティーの仕組み

    シムシティーを作り始めていちばん最初に考えたのは、街を一種の生き物のように表現できないかってことだった。 僕が街についてどう考えているかはすでに説明したけど、大事なのは街を構成する建物とか道路じゃなくって、そこでどんな活動が行なわれているかってことだと思うんだ。道路を車が走り、電車が動き、人々が動き回り、常に要素が変化し続ける“動きのある”システム。街を表現する方法っていうと誰でも地図を思い浮かべると思うけど、僕は動きがない地図じゃなくって、たとえば飛行機から眺めた街、動きのある世界をディスプレイに表現しようって考えた。それこそが僕の考える街の姿だからね。 それともう一つ考えたことは、プレイヤーに伝える情報をできるだけわかりやすく、それも“面白い”って思えるような形で表現しようってことだった。シミュレーション・ソフトっていうとたいてい数値や図表がたくさん出てくるけれど、数字が並んでいるのを

  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • 新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改

    新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ

    新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改
  • 講義資料 配列解析アルゴリズム特論I 情報生命科学基礎/演習 他 -渋谷哲朗

    平成20年度 東京大学大学院 情報理工学系研究科・コンピュータ科学専攻 配列解析アルゴリズム特論I 4/10 4/17 4/24 5/1 5/8 5/15 5/22 5/29 (The problem to be reported - in English) 6/5 6/12 6/19 7/3 7/10 7/17 東京大学 理学部・情報科学科 情報科学特別講義3 (情報科学とバイオインフォマティクス) 6/10 7/15 7/22 東京大学大学院 新領域創成科学研究科・情報生命科学専攻 情報生命科学基礎/演習 5/27 6/17 京都大学大学院 薬学研究科・医薬創成情報科学専攻 情報科学概論 6/3 中央大学大学院 理工学系研究科・物理学専攻 物理学特別講義第二 TBA 創価大学工学部 生命情報工学科 TBA TBA 戻る Copyright (c) 2004- Tetsuo

  • Boidsとは

    Boid(ボイド)とは、1987年にCraig Raynoldsによって発表された理論です。 この理論は、3つのルールを規定するだけで鳥の群れをシミュレーションできるというものです。 ちなみにBoidという名の由来は、鳥もどきという意味の言葉birdoid(バードイド)が短くなりこのように呼ばれるようになりました。 さて、Boidsの3つのルールとは、以下の通りです。 Separationは、近くの鳥や物体に近づきすぎたらぶつからないように離れるルールです。 もし、ボイド同士が近づきすぎてしまったら、前を飛んでいるボイドはスピードを速くし、 後ろを飛んでいるボイドはスピードを遅くするようにします。 障害物、例えば柱とか壁とかに対しては、それにぶつからないように方向転換して衝突を避けるようにします。 Alingmentは、近くの鳥たちと飛ぶスピードや方向を合わせようとするルールです。 すなわ

  • 1