タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

performanceとalgorithmとhashに関するmanabouのブックマーク (3)

  • 私が書いた最速のハッシュテーブル – PART 3 | POSTD

    テーブルを、異なるmax_load_factor()と比較する 先に示した最後のグラフは、私のテーブルとgoogle::dense_hash_mapがmax_load_factorに0.5を使う一方で、std::unordered_mapとboost::multi_indexが1.0を使って動作検証を行っていました。もしかすると他のテーブルも、低いmax_load_factorの値を使えば、より速くなるのではないでしょうか? それを確かめるため、最初のグラフ(成功したルックアップ)に使ったのと同じベンチマークを実行しました。ただし、どのテーブルもmax_load_factorは0.5に設定しました。そして、テーブルの再割り当ての直前に測定を行いました。もう少し詳しく説明しますが、まずは次のグラフをご覧ください。 注釈: 成功したルックアップの占有率(load factor) 0.5 (縦軸

    私が書いた最速のハッシュテーブル – PART 3 | POSTD
  • 私が書いた最速のハッシュテーブル – PART 2 | POSTD

    素数か2のべき乗か ハッシュテーブルのアイテムをルックアップする際に高負荷なステップが3つあります。 キーをハッシングする キーをスロットにマッピングする 該当スロットのメモリをフェッチする ステップ1は、キーが整数であれば、低負荷になります。単にintをsize_tにキャストするだけです。しかし、文字列のようなタイプのキーの場合は高負荷となります。 ステップ2はよくある整数モジュロ演算です。 ステップ3はポインタの間接参照です。std::unordered_mapの場合は複数のポインタ間接参照となります。 処理の遅いハッシュ関数でなければ、直観的にステップ3が最も高負荷になると考えると思います。しかし、全てのルックアップでキャッシュミスが生じなければ、整数モジュロが最も高負荷な処理となります。現代のハードウェアにおいても整数モジュロは非常に遅いのです。 Intelマニュアル では、整数モ

    私が書いた最速のハッシュテーブル – PART 2 | POSTD
  • 私が書いた最速のハッシュテーブル – PART 1 | POSTD

    結局、やり出したら止まりません。私は以前、” I Wrote a Fast Hashtable(私が書いた高速なハッシュテーブル) “という記事と、それに次いで” I Wrote a Faster Hashtable(私が書いたより高速なハッシュテーブル) “という記事をブログにアップしましたが、今回ついに、最速のハッシュテーブルを書き上げました。これが意味するところは、ルックアップがどのハッシュテーブルよりも速いということです。それに加えて、挿入や削除も(最速とまではいかないまでも)非常に速く行えます。 秘訣は、探索回数の上限を設定したロビンフッドハッシュ法を使用することです。ある要素が、その理想的な位置からX数以上、離れた位置にある場合、テーブルを拡張することで、全ての要素が、その大きなテーブル内において、理想的な位置に近づくようにします。結果的に、このやり方は非常にうまくいきました。

    私が書いた最速のハッシュテーブル – PART 1 | POSTD
  • 1