タグ

stanとbayesに関するmanabouのブックマーク (2)

  • 8行のデータで理解する階層ベイズ - Qiita

    学習効果を統計的に評価したい! こんにちは グロービスではさまざまな教育事業を展開していますが、多くの人に学習を継続してもらうためには、研修をしたりコンテンツを視聴してもらったりするだけでなく、その学習効果を測定してユーザーにフィードバックすることが重要です。このとき、だれが見ても明らかな効果が出れば良いのですが、受講前後の成績変化のばらつきが大きかったりデータが少なかったりして、必ずしも分かりやすい結果が得られるとは限りません。そういった場合にデータを丁寧に紐解いて、どの程度効果があったのかを明らかにするのも分析の仕事のひとつです。 今回は階層ベイズモデルという統計モデルを使って、高校における学力コーチングの成果についてのデータを分析します。階層ベイズはやや高度な統計モデルというイメージがありますが、この記事ではたった8行のデータを例にしてその概要を説明してみたいと思います。 想定読者

    8行のデータで理解する階層ベイズ - Qiita
  • 階層ベイズによる小標本データの比率の推定 - LIVESENSE Data Analytics Blog

    こんにちは、リブセンスで統計や機械学習関係の仕事をしている北原です。今回は階層ベイズを使った小技の紹介です。推定にはStanを使います。 Webサービスに限らないかもしれませんが、CVRやCTRなど比率データを扱うことって多いですよね。弊社の求人サービスは成果報酬型であるため、各求人の採用率などを知りたいこともよくあります。しかし、求人別だとバイト求人や転職求人の応募数はそれほど多くないので、採用数を応募数で単純に割っただけでは極端な採用率になりがちです。今回は、このような分母の値が小さい比率のデータを、階層ベイズを使って計算する方法を紹介します。 応募数が少ないときの採用率計算の問題 まず、応募数が少ない求人の採用率計算が必要な理由と、このようなサンプルサイズが小さいデータの比率計算の問題について説明します。 その問題をふまえて、今回どのような推定を行いたいかを説明します。 弊社の成果報

    階層ベイズによる小標本データの比率の推定 - LIVESENSE Data Analytics Blog
  • 1