You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
ディープラーニングは習うより慣れろかも ファッションでディープラーニングをしているディープラーニング芸人からあげです。私は、特に専門家でも何でもないのですが、機械学習に興味もって、ディープラーニングに関することブログでアウトプットしているうちに「AIに関する本に名前がクレジットされたり」「AI解析のオンラインコンテスト#Aidemynoteで特別賞受賞したり」「ラズパイマガジンという商業誌にAI関係で記事を書いたり」「ディープラーニングおじさんの記事がバズったあげくITmediaで取り上げられたり」と多少なりとも価値を提供できるようになってきました。 何の知識もバックグラウンドも、大した能力も無い自分が、どうやって知識を身につけることができたかというと、色々本も読んだのですが、実際に手を動かしてプログラムを組んで、実問題に対して試行錯誤した結果をブログにアウトプットし続けたことが大きいのか
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 以下のことについて知りたい人向けの記事。 ①機械学習の利点と欠点、TensorFlowの利点と欠点 ②ニューラルネットワークの原理についての簡潔な説明 (オンライン書籍:http://nnadl-ja.github.io/nnadl_site_ja/index.html をまとめたもの) ③TensorFlowのチュートリアルに沿ってプログラム作成、その実行結果 以下、参考にしたサイト 1次関数の近似: https://www.tensorflow.org/versions/master/get_started/index.html h
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? DeepLearning Advent Calendar 2016の17日目の記事です。 はじめに はじめまして。 Liaroという会社でエンジニアをしている@eve_ykと申します。 今年もあと僅かとなりました。 ここらで、今年のDeepLearningの主要な成果を振り返ってみましょう。 この記事は、2016年に発表されたDeepLearning関係の研究を広く浅くまとめたものです。今年のDeepLearningの研究の進歩を俯瞰するのに役立てば幸いです。 それぞれの内容について、その要点や感想なんかを簡単にまとめられたらと思います
Deep Learning Tutorials¶ Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. See these course notes for a brief introduction to Machine Learning for AI and an introduction to Deep Learning algorithms. Deep Learning is about learning multiple levels of represen
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く