タグ

ブックマーク / aidiary.hatenablog.com (5)

  • 畳み込みニューラルネットワークの可視化 - 人工知能に関する断創録

    Deep Learningの学習結果(重み)はブラックボックスで、隠れ層のユニット(特に深い層の!)が一体何を学習したのかがよくわからないと長年言われてきた。しかし、今回紹介する方法を使うとニューラルネットが何を学習したのか目で見える形で表現できる。 畳み込みニューラルネットで学習したフィルタの可視化というと以前やったように学習した第1層のフィルタの重みを直接画像として可視化する方法がある。 しかし、畳み込みフィルタのサイズは基的に数ピクセル(MNISTの例では5x5ピクセル程度)のとても小さな画像なのでこれを直接可視化しても何が学習されたか把握するのはとても難しい。たとえば、MNISTを学習した畳み込みニューラルネット(2016/11/20)のフィルタを可視化しても各フィルタがどの方向に反応しやすいかがわかる程度だ。 各フィルタが何を学習したかを可視化する別のアプローチとして各フィルタ

    畳み込みニューラルネットワークの可視化 - 人工知能に関する断創録
  • Machine Learning with Scikit Learn (Part I) - 人工知能に関する断創録

    今年の7月に開催されたSciPy2015の講演動画がEnthoughtのチャンネルで公開されている。今年も面白い講演が多いのでいろいろチェックしている。 今年の目標(2015/1/11)にPython機械学習ライブラリであるscikit-learnを使いこなすというのが入っているので、まずはscikit-learnのチュートリアルを一通り見ることにした。 Part IとPart IIを合わせると6時間以上あり非常に充実している。IPython Notebook形式の資料やデータは下記のGitHubアカウントで提供されている。ノートブックをダウンロードし、実際に手を動かしながらチュートリアルを進めると理解がより進むかもしれない。 あとで振り返りやすいように内容を簡単にまとめておきたい。 1.1 Introduction to Machine Learning 機械学習システムの流れ。教師あ

    Machine Learning with Scikit Learn (Part I) - 人工知能に関する断創録
  • Deep Learning リンク集 - 人工知能に関する断創録

    乗るしかないこのビッグウェーブに Deep Learning(深層学習)に関連するまとめページとして使用する予定です。Deep Learningに関する記事・スライド・論文・動画・書籍へのリンクをまとめています。最新の研究動向は全然把握できていないので今後研究を進めるなかで記録していきたいと思います。読んだ論文の概要も簡単にまとめていく予定です。ブログでは、当面の間、Theanoを使って各種Deep Learningアルゴリズムを実装していきたいと思います。 関連ニュースなどはTwitterでも流しているので興味があったらフォローしてください。 すべてに目が通せず更新が追いついていません。私のはてなブックマークで[Deep Learning]というタグを付けて登録しています。まったく整理できていませんがご参考まで。 Theano編 TheanoをWindowsにインストール(2015/1

    Deep Learning リンク集 - 人工知能に関する断創録
  • パターン認識と機械学習(PRML)まとめ - 人工知能に関する断創録

    2010年は、パターン認識と機械学習(PRML)を読破して、機械学習の基礎理論とさまざまなアルゴリズムを身につけるという目標(2010/1/1)をたてています。もうすでに2010年も半分以上過ぎてしまいましたが、ここらでまとめたページを作っておこうと思います。ただ漫然と読んでると理解できてるかいまいち不安なので、Python(2006/12/10)というプログラミング言語で例を実装しながら読み進めています。Pythonの数値計算ライブラリScipy、Numpyとグラフ描画ライブラリのmatplotlibを主に使ってコーディングしています。実用的なコードでないかもしれませんが、ご参考まで。 PRMLのPython実装 PRML読書中(2010/3/26) 多項式曲線フィッティング(2010/3/27) 最尤推定、MAP推定、ベイズ推定(2010/4/4) 分類における最小二乗(2010/4/

    パターン認識と機械学習(PRML)まとめ - 人工知能に関する断創録
  • Mendeleyで論文管理 - 人工知能に関する断創録

    今まで読んだ論文の管理にはJabRefというフリーソフトを使ってきたのですけどMendeleyというWebサービスに乗り換えることにしました。非常によいサービスだと思うのでちと紹介します。 Mendeleyは主に論文を管理するWebサービスです。ブラウザからもアクセスできるのですが、Mendeley DesktopというWindows, Mac, Linuxで使えるデスクトップアプリケーションもついています。ローカルで論文を登録してもWebと同期できるので複数のPCからも使えて大変便利です。インタフェースはすべて英語ですが日語論文の登録も問題なくできます。起動すると下のような感じになります。 Webインタフェースは下のような感じです。洗練されています。 論文の登録 手元にPDFがある場合は、そのファイルを登録すると論文リストに追加されます。その際、PDFのテキストを解析して(あまり精度は

    Mendeleyで論文管理 - 人工知能に関する断創録
  • 1