エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
変分法をごまかさずに変分ベイズの説明をする - StatModeling Memorandum
StanでADVIが使えるようになったので、変分ベイズの基礎は抑えておきたいなぁと思って最近学んでいまし... StanでADVIが使えるようになったので、変分ベイズの基礎は抑えておきたいなぁと思って最近学んでいました。自分向けのメモとして残します。 対数周辺尤度・変分下限・KL情報量 目的は事後分布の最もよい近似となるを求めることです。にはあとで因子分解可能という条件を入れます。 イエンセンの不等式を使って、対数周辺尤度を下から評価すると、 を変分下限と呼びます。任意の関数の関数です。対数周辺尤度はevidenceとも呼ばれるため、変分下限はevidence lower bound、略してELBOとも呼ばれます。対数周辺尤度と変分下限の差は、 となります。これはと事後分布のKL情報量(Kullback-Leiblerdivergence)です。対数周辺尤度がにはよらない、データのみから決まる定数であることを考えると、事後分布の最もよい近似となるを求めることは、変分下限を最大化することに等価になりま
2018/08/10 リンク