タグ

ブックマーク / digital-gov.note.jp (2)

  • デジタル庁2023年度事業 行政での生成AI利活用検証から見えた10の学び (1/3)|デジタル庁

    デジタル庁のAI担当の大杉直也です。この記事では、生成AIによる業務改善の一助になればと思い、実際の行政業務で生成AIの利活用を検討する際に得られた知見を共有します。 記事は、「デジタル庁2023年度事業 行政での生成AI利活用検証の結果報告(以降、報告書とよびます)」で得られた知見を、よりわかりやすく具体的に示すために、「10の学び」の形式にまとめたものです。 その検証ではデジタル庁を中心とした行政職員を対象に、実際に複数種類のテキスト生成AIを取り扱える環境+ユースケースごとの独自開発を含むサポート体制を作り、(1)どの行政業務に対し、(2)どのようにテキスト生成AIを使えば、(3)どのくらい改善効果がありそうか、を調べました。また、報告書には含まれていなかった個別ヒアリング等による知見も反映させています。 文量が少し多くなってしまったため、全3回の構成で紹介いたします。第1回の

    デジタル庁2023年度事業 行政での生成AI利活用検証から見えた10の学び (1/3)|デジタル庁
  • デジタル庁のデータ分析基盤「sukuna」|デジタル庁

    はじめまして。デジタル庁ファクト&データユニット所属、データエンジニアの長谷川です。 記事ではデジタル庁内でデータ活用を推進するための組織と分析基盤についてご紹介します。 これまでのデジタル庁noteと比べると、技術寄りの話題が多い記事となりますが、庁内のデータ活用に興味のある方はぜひご覧ください。 デジタル庁のデータ活用組織「ファクト&データユニット」ファクト&データユニットとはデジタル庁の特徴の一つに、デジタル分野において各種の専門性をもつ「民間専門人材」が多く所属していることが挙げられます。 民間の専門人材は、デザイン、プロダクトマネジメント、エンジニアリングなど、領域ごとに「ユニット」と呼ばれる組織を構成しており(参考:デジタル庁 - 組織情報)、必要に応じてさまざまなプロジェクトにアサインされて業務を遂行する、人材プールのような役割を果たしています。 ファクト&データユニットも

    デジタル庁のデータ分析基盤「sukuna」|デジタル庁
    nabinno
    nabinno 2023/06/28
    AWSで言うとGlue部分をdbtで制御する感じか。組織体力があるなら責務の切り分けでdbt導入だろうが、入り口としてはStudioとDatabrewを分けるというのが妥当。
  • 1