タグ

computational-complexity-theoryに関するnabinnoのブックマーク (12)

  • P≠NP予想 - Wikipedia

    出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。(2013年2月) P≠NP予想(ピーエヌピー予想、英語: P is not NP)は、計算複雑性理論(計算量理論)における予想 (未解決問題) の1つであり、「クラスPとクラスNPが等しくない」すなわち「クラスNPの元だがクラスPの元でないような決定問題(判定問題)が存在する」というものである。P対NP問題(PたいNPもんだい、英: P versus NP)と呼ばれることもある。 理論計算機科学と現代数学上の未解決問題の中でも最も重要な問題の一つであり、2000年にクレイ数学研究所のミレニアム懸賞問題の一つとして、この問題に対して100万ドルの懸賞金が賭けられた。 クラスPとは、決定性チューリングマシンにおいて、多項式時間で判定可能な問題のクラスであり、クラ

  • List of NP-complete problems - Wikipedia

    This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by editing the page to add missing items, with references to reliable sources. This is a list of some of the more commonly known problems that are NP-complete when expressed as decision problems. As there are thousands of such problems known, this list is in no way comprehensive. Many proble

  • 3-dimensional matching - Wikipedia

    3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph). 3-dimensional matching, often abbreviated

    3-dimensional matching - Wikipedia
  • Classic Nintendo Games are (Computationally) Hard

    We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokemon. Our results apply to generalized versions of Super Mario Bros. 1-3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness o

  • PSPACE-complete - Wikipedia

  • NP - Wikipedia

    計算複雑性理論における NP (英: Non-deterministic Polynomial time)は、複雑性クラスのひとつであり、答えがyesとなるような問いに対して、多項式時間で検証できる証拠が存在する決定問題のクラスである。 NP は、NTIMEを使って次のように定義される[1]。 つまり、非決定性チューリングマシンによって多項式時間で解ける決定問題のクラスであり、名称も 英: Non-deterministic Polynomial time(非決定性多項式時間)の略である。また、多項式時間検証可能という同値な定義もある。言語 が NP に属するとは、多項式時間決定性チューリングマシン と多項式 が存在し、次の性質を満たすことを言う。 ならば、ある証拠 が存在し、 ならば、どんな証拠 でも、 ハミルトン閉路問題は、「与えられたグラフについて、全ての頂点を一度だけ通る閉路(ハミ

  • 多項式時間変換 - Wikipedia

    多項式時間変換(たこうしきじかんへんかん、polynomial-time reduction)は計算量理論の一概念である。多項式時間帰着(たこうしきじかんきちゃく)、多項式時間還元(たこうしきじかんかんげん)ともいう。幾つか種類があるが、内容的に多対一還元であれば、「多項式時間多対一還元」「Karp 還元」などとも呼ばれる。もし内容がチューリング還元であれば、「多項式時間チューリング還元」「Cook 還元」などと呼ばれる。 ある問題 A の各問題例を、別の問題 B の問題例に決定性チューリングマシンを用いて多項式時間で変換して答が同じにできるとき、「A は B に多項式時間変換可能である」といい、 と書く。 ただしここでの変換は A の入力内容に依存してはならない。つまり A という問題の全パターンが B に変換できなければいけない。 この概念は計算理論において問題の「難しさ」の度合いを測

  • NP完全問題 - Wikipedia

    NP完全(な)問題(エヌピーかんぜん(な)もんだい、英: NP-complete problem)とは、(1) クラスNP(英: Non-deterministic Polynomial)に属する決定問題(言語)で、かつ (2) クラスNPに属する任意の問題から多項式時間還元(帰着)可能なもののことである。条件 (2) を満たす場合は、問題の定義が条件 (1) を満たさない場合にも、NP困難な問題とよびその計算量的な困難性を特徴づけている。多項式時間還元の推移性から、クラスNPに属する問題で、ある一つのNP完全問題から多項式時間還元可能なものも、またNP完全である。現在発見されているNP完全問題の証明の多くはこの推移性によって充足可能性問題などから導かれている。充足可能性問題がNP完全であることは1971年、スティーブン・クックによって証明され[1]、R. M. カープの定義した多項式時間

  • 多項式時間 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "多項式時間" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2016年9月) 多項式時間(たこうしきじかん)とは計算理論において多項式で表される計算時間。 多項式時間のアルゴリズムとは、解くべき問題の入力サイズに対して、処理時間の上界としての多項式で表現できるものが存在するアルゴリズムを指す。問題入力サイズの増大に対する、処理時間の増大を表すものであることに注意されたい。 たとえばバブルソートの処理時間は要素数に対して要素の比較・交換を行う回数は高々 である。したがって、この場合の最悪計算量のオーダーは''O''記法を用いてと表される

  • P (計算複雑性理論) - Wikipedia

    Pはしばしば、「効率的に解ける」問題のクラスとして扱われる。しかしながら、RPやBPPといった乱択で解けるクラスも、Pより大きいかもしれないが「効率的に解ける」と考えることもできる。逆にPに属しても実際には扱うことが困難である問題もある。例えば、入力のサイズnに対してn1000000の時間を必要とする問題も、定義からはPに属する。 Pに属する問題のうち対数領域還元に関して最大なものはP完全であるという。 非決定性チューリング機械によって多項式時間で解かれる判定問題のクラスをNPという。PがNPに含まれることは自明である。多くの研究者がPはNPの真部分集合であると信じているが、証明されていない(P≠NP予想)。 対数領域の決定性チューリング機械で判定可能な問題のクラスであるLはPに含まれるが、L = Pかどうかは未解決である。対数領域の交替性チューリング機械によって解ける問題のクラスALOG

  • 計算複雑性理論 - Wikipedia

    計算複雑性理論(けいさんふくざつせいりろん、英: computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。 「計算量」と「計算複雑性」はともに computational complexity に対応する語であるが、個々のアルゴリズムの効率に着目する文脈では「計算量」が広く用いられるのに対し、問題に内在する質的困難さを表す意識からは「複雑性」「複雑さ」が好まれる傾向がある。 計算複雑性理論は計算可能関数の計算の複雑さを扱う。計算理論のもう一つの重要な分野である計算可能性理論では問題の解法があるかどうかだけを扱い、その複雑さや必要とする計算資源量は問わない点が異なる。 具体的に

  • NP困難 - Wikipedia

    P、NP、NP完全、NP困難の関係を表すベン図 NP困難(エヌピーこんなん、英: NP-hard)とは計算量理論において、問題が「NPに属する任意の問題と比べて、少なくとも同等以上に難しい」ことである[1]。正確にいうと、ある問題 H がNP困難であるとは、「NPに属する任意の問題 L が H へ帰着可能である」と定義される。この「帰着」の定義として何を用いるかにより微妙に定義が異なることになるが、例えば多項式時間多対一帰着や多項式時間チューリング帰着を用いる。もしもあるNP困難問題を解ける多項式時間の機械が存在すれば、それを利用すればNPに属する任意の問題を多項式時間で解くことができる。 NP完全問題とは、NP困難であり、かつNPに属する問題である。これとは異なり、ある問題がNP困難であってもNPに属するとは限らない。NPは決定問題のクラスなのでNP完全もまた決定問題に限られるが、定義に

    NP困難 - Wikipedia
  • 1