"Our 380.000+ employees all over the world must have the same competence profile. Synthesia helps us develop engaging, relevant and localised training content at scale."

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? こんにちは、nadareです。 機械学習エンジニアで、普段はレコメンド・検索関連のお仕事をしています。いろんな競技プログラミングが好きです。 最近はRetrieval-based-Voice-Conversion(以下RVC)という技術に関心を持ち、本家Retrieval-based-Voice-Conversion-WebUIやddPn08さん版RVC-WebUI、VC ClientにPR投げつつ勉強しています。 本記事では、RVCのモデルで綺麗な日本語に変換するための学習テクニックを紹介します。 2023/05/24 追記 続・RV
Baidu Research presents Deep Voice, a production-quality text-to-speech system constructed entirely from deep neural networks. The biggest obstacle to building such a system thus far has been the speed of audio synthesis – previous approaches have taken minutes or hours to generate only a few seconds of speech. We solve this challenge and show that we can do audio synthesis in real-time, which amo
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く