こんにちは。 Kafkaを試している最中で微妙ですが、最近使えるのかなぁ、と情報を集めているのが「Apache Spark」です。 MapReduceと同じく分散並行処理を行う基盤なのですが、MapReduceよりも数十倍速いとかの情報があります。 ・・・んな阿呆な、とも思ったのですが、内部で保持しているRDDという仕組みが面白いこともあり、 とりあえず資料や論文を読んでみることにしました。 まず見てみた資料は「Overview of Spark」(http://spark.incubator.apache.org/talks/overview.pdf)です。 というわけで、読んだ結果をまとめてみます。 Sparkとは? 高速でインタラクティブな言語統合クラスタコンピューティング基盤 Sparkプロジェクトのゴールは? 以下の2つの解析ユースケースにより適合するようMapReduceを拡張
こんにちは。SI部の腰塚です。 RDBやデータウェアハウスの仕事に携わることが多かった筆者は、数年前からたびたび聞こえたビッグデータ分析や機械学習のための分散処理フレームワークに興味を覚えたものの、ついぞアクセスしないままここまで来てしまいました。 今回ブログを書くにあたって、せっかくなのでイチから手さぐり入門し、いまさら他人に聞けない分散処理の初歩からhadoop・sparkを触ってみるまでをまとめたいと思います。 1.分散処理の基礎知識 1-1.分散処理の処理方式:MapReduce まず分散処理とは、ひとつの計算処理をネットワークで接続した複数のコンピュータで同時並列で処理することです。 ビッグデータ活用の市場が日々大きくなるに従って、数百テラ~ペタのデータ処理も珍しいものではなくなっており、日常的にこの規模のデータを扱うシステムでは、現実的な時間的・費用的コストで処理する工夫が必要
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く