タグ

graph-theoryとmathematicsに関するnabinnoのブックマーク (24)

  • 二項係数の有名公式一覧と2つの証明方針 | 高校数学の美しい物語

    nnn 個のものから rrr 個を(順番を考慮せず)選ぶ組合せの数です。 nCr{}_n\mathrm{C}_rn​Cr​ と書きます。(nr)\dbinom{n}{r}(rn​) と書くこともあります。 具体的には,nCr=n!r!(n−r)!{}_n\mathrm{C}_r=\dfrac{n!}{r!(n-r)!}n​Cr​=r!(n−r)!n!​です。 このページでは,nnn は正の整数,rrr は 000 以上 nnn 以下の整数とします。

    二項係数の有名公式一覧と2つの証明方針 | 高校数学の美しい物語
  • パスカルの三角形 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "パスカルの三角形" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2019年1月) パスカルの三角形の最初の6段 パスカルの三角形(パスカルのさんかくけい、英: Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に 1 を配置する。それより下の段は両端には 1 を、それ以外の位置には右上の数と左上の数の和を配置

    パスカルの三角形 - Wikipedia
  • 二項係数 - Wikipedia

    二項係数の全体をパスカルの三角形の形に並べることができる。 4つの数から2つの数を選ぶ方法は 通りある。 四次までの二項展開の視覚的説明 数学における二項係数(にこうけいすう、英: binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は2つの非負整数で添字付けられ、添字 n, k を持つ二項係数はふつう (n k) とか (n¦k) と書かれる(これは二項冪 (1 + x)n の展開における xk の項の係数である。適当な仮定の下で、この係数の値は で与えられる)。二項係数を、連続する整数 n に対する各行に k を 0 から n まで順に並べて得られる三角形状の数の並びをパスカルの三角形と呼ぶ。 この整数族は代数学のみならず数学の他の多くの分野、特に組合せ論において現れる。n元-集合から k個の元を(その順番を無視して)選ぶ方法が (

    二項係数 - Wikipedia
  • ハイパーグラフ - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Hypergraph|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があります

    ハイパーグラフ - Wikipedia
  • 離散数学 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "離散数学" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2024年1月) この記事には独自研究が含まれているおそれがあります。 問題箇所を検証し出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2024年1月)

  • 技術者のための高等数学、教員のための数学: ホットコーナー

    ブログ(iiyu.asablo.jpの検索) ホットコーナー内の検索 でもASAHIネット(asahi-net.or.jp)全体の検索です。 検索したい言葉のあとに、空白で区切ってki4s-nkmrを入れるといいかも。 例 中村(show) ki4s-nkmr ウェブ全体の検索 ASAHIネット(http://www.asahi-net.or.jp )のjouwa/salonからホットコーナー(http://www.asahi-net.or.jp/~ki4s-nkmr/ )に転載したものから。 --- アマゾンで売れていたいろいろ数学、リストだけでもと思ったけど、こ の洋書のことだけで、いろんなネタが出たので、とりあえず、これを。 http://www.amazon.co.jp/exec/obidos/ASIN/0471728977/showshotcorne-22/ Advanced

  • 平衡二分探索木 - Wikipedia

    平衡二分探索木(へいこうにぶんたんさくぎ、英: self-balancing binary search tree)とは、計算機科学において二分探索木のうち木の高さ(根からの階層の数)を自動的にできるだけ小さく維持しようとするもの(平衡木)である。平衡二分探索木は連想配列や集合その他の抽象データ型を実装する最も効率のよいデータ構造の1つである。 概要[編集] 二分探索木上の大半の操作にかかるコストは木の高さに比例するので木の高さは低く保つのが望ましい。通常の二分探索木の主要な欠点は、キーが辞書順に挿入されるような普通の状況で木の高さが大きくなってしまうということである。結果として連結リスト同様のデータ構造になってしまい、全ての操作が高くつく結果となる。もしあらかじめ全てのデータが分かっているならば、値をランダムに追加することで木の高さを平均的に小さく保つことができるが、そのような贅沢はいつ

  • Weighted Tree -- from Wolfram MathWorld

  • NetworkX - Wikipedia

    This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, inde

    NetworkX - Wikipedia
  • 二分木 - Wikipedia

    簡単な二分木。大きさ9、深さ3、根は値2を持つ 二分木(にぶんぎ)は、データ構造の1つである。二進木(にしんぎ)やバイナリツリー(英: binary tree)とも呼ばれ、根付き木構造の中で、全てのノード(節点 node)が持つ子の数が高々2であるものをいう。典型的には2つの子はそれぞれ「左」「右」と呼ばれる。 たとえば、二分探索や二分ヒープを実装するために使われる。 以後、括弧の中は英語表記。 親から子へ有向線分(辺、エッジ edge)が引かれる。子を持たないノードを葉(リーフ leaf)ないし外部ノード (external node) と呼ぶ。葉でないノードを内部ノード (internal node) と呼ぶ。あるノードの「深さ」(depth) はルート(root 「根」にあたるノード)からそのノードまでにたどる経路(パス path)の長さ(経路の種類ではなく、ノード-ノードを1と数え

    二分木 - Wikipedia
  • 二分探索木 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "二分探索木" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2023年3月) 二分探索木 二分探索木(にぶんたんさくぎ、英: binary search tree)は、コンピュータプログラムにおいて、「左の子孫の値 ≤ 親の値 ≤ 右の子孫の値」という制約を持つ二分木である。探索木のうちで最も基的な木構造である。 構造は二分木と同じだが、「左の子孫の値 ≤ 親 ≤ 右の子孫の値」という制約を持つ。左の子孫の値と右の子孫の値の両方に等号をつけているが、実際にはどちらかに統一しておく必要がある。 平衡(左右のバランスがとれている状態)し

    二分探索木 - Wikipedia
  • 木 (数学) - Wikipedia

    T は木である T に閉路はなく、 n − 1 の辺を持つ T は連結で、 n − 1 の辺を持つ T は連結で、すべての辺は橋である T の任意の2点を結ぶ道がちょうど1つある T に閉路はないが、新しい辺をつけ加えると閉路が必ず1つできる 木 T には、以下のような性質がある。 T の2点を結ぶ T に含まれない辺 e に対して、T + e には e を通るただ一つの閉路があり、この閉路上の任意の辺 f に対して T + e - f は木となる。 頂点が2つ以上ある木には少なくとも2個の端末点がある。また、端末点とは次数1の点である。 上の定理から、木には必ず端末点があり、その端末点を除去すると位数の一つ小さい木が得られる。逆に言えば、位数 n の木は、位数 n − 1 の木に一つの新しい点と、これに接続する一の新しい辺を加えて得られる。 あるノードを選んで、それを一番「上」にあ

    木 (数学) - Wikipedia
  • http://isl.sist.chukyo-u.ac.jp/Archives/vpm.pdf

  • Matching (graph theory) - Wikipedia

    Definitions[edit] Given a graph G = (V, E), a matching M in G is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share common vertices. A vertex is matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is unmatched (or unsaturated). A maximal matching is a matching M of a graph G that is not a subset of any other

  • 一筆書き - Wikipedia

    六芒星の一筆書きの例。 一筆書き(ひとふでがき)とは、広い意味では「筆記具を平面から一度も離さず線図形を描く」ことである。狭い意味では、これに加えて「同じ線を二度なぞらない(点で交差するのはかまわない)」という条件が加わる。 以下は後者の狭い意味での一筆書きについて記す。 三角形「△」や四角形「□」は一筆書き可能だが、十字「+」は一筆書きできない。また、五芒星や白星「☆」、六芒星「✡」は一筆書き可能だが、アスタリスク「*」は一筆書きができない。このように、一筆書きできる図形とできない図形がある。 「与えられた図形が一筆書き可能かどうか」という問題の例として、「ケーニヒスベルクの橋の問題」(独: Königsberger Brückenproblem)が知られている。なお、ケーニヒスベルクとは実際にあった場所の名前である。

    一筆書き - Wikipedia
  • Graph theory - Wikipedia

    This article is about sets of vertices connected by edges. For graphs of mathematical functions, see Graph of a function. For other uses, see Graph (disambiguation). A drawing of a graph. In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points

    Graph theory - Wikipedia
  • 3-dimensional matching - Wikipedia

    3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph). 3-dimensional matching, often abbreviated

    3-dimensional matching - Wikipedia
  • 組合せ数学 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "組合せ数学" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2024年1月) 組合せ数学(くみあわせすうがく、英語: combinatorics)あるいは組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。離散数学の中核の一つとされる。特に問題とされることとして、 集合に入っている対象を数えたり(数え上げ組合せ論)、 いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザイン(英語版))、 「最大」「最小」の対象を求めたり(極値組合せ論(英語

    組合せ数学 - Wikipedia
  • ワーシャル–フロイド法 - Wikipedia

    ワーシャル–フロイド法の概略は以下の通りである: 入力: (有向または無向)グラフ の各辺の長さ 出力:頂点 と頂点 を結ぶ最短経路を全ての に対して出力 計算量: 簡単の為 上のグラフ のみを考える。 を 以下の整数とし、 とする。 の 各頂点 に対し、 を に制限したグラフ上での から への最短経路を とする。(経路が無い場合は 「なし」とする。) とし、 を に制限したグラフ上での から への最短経路を とする。 内での から への最短経路は、 を経由するか、あるいは 内にあるかのいずれかであるので、 次が成立することが分かる。ただしここで記号「」は「経路 を進んだ後に経路 を進む」という経路を表す。 : が より短い場合 : そうでない場合。 よって に対する最短経路 が全ての に対して分かっていれば、 に対する最短経路 が全ての に対して求まる。 ワーシャル–フロイド法は以上の考

    ワーシャル–フロイド法 - Wikipedia
  • ホールの定理 - Wikipedia

    ホールの定理(英: Hall's theorem)または結婚定理(英: marriage theorem)は、組合せ数学の帰結の1つで、有限集合の集まりのそれぞれから別個の元を選択できる条件を与える。名称の由来は数学者のフィリップ・ホール(1904年-1982年)。 S = {S1, S2, ... } が有限集合の集まりとする(可算である必要はない)。Sの横断集合 (transversal) または S の完全代表系 (system of distinct representatives; SDR) とは、別個の元からなる集合 X = {x1, x2, ...}(ここで |X| = |S|)で、全ての i について xi∈Si となっている集合である。 Sの結婚条件 (marriage condition) とは、Sの任意の部分集合 についての次の条件である。 ここで、|T| は集合 T