タグ

graph-theoryとsearchに関するnabinnoのブックマーク (3)

  • R-tree - Wikipedia

    Simple example of an R-tree for 2D rectangles Visualization of an R*-tree for 3D points using ELKI (the cubes are directory pages) R-trees are tree data structures used for spatial access methods, i.e., for indexing multi-dimensional information such as geographical coordinates, rectangles or polygons. The R-tree was proposed by Antonin Guttman in 1984[2] and has found significant use in both theo

    R-tree - Wikipedia
  • 最短経路問題 - Wikipedia

    グラフ理論における最短経路問題(さいたんけいろもんだい、英: shortest path problem)とは、重み付きグラフの与えられた2つのノード間を結ぶ経路の中で、重みが最小の経路を求める最適化問題である。 2頂点対最短経路問題 特定の2つのノード間の最短経路問題。一般的に単一始点最短経路問題のアルゴリズムを使用する。 単一始点最短経路問題 (SSSP:Single Source Shortest Path) 特定の1つのノードから他の全ノードとの間の最短経路問題。この問題を解くアルゴリズムとしては、ダイクストラ法やベルマン-フォード法がよく知られている。 全点対最短経路問題 (APSP : All Pair Shortest Path) グラフ内のあらゆる2ノードの組み合わせについての最短経路問題。この問題を解くアルゴリズムとしては、ワーシャル-フロイド法が知られている。 このよう

  • ダイクストラ法 - Wikipedia

    ダイクストラ法の動作のアニメーション ダイクストラ法(だいくすとらほう、英: Dijkstra's algorithm)はグラフ理論における辺の重みが非負数の場合の単一始点最短経路問題を解くための最良優先探索によるアルゴリズムである。 ダイクストラ法は、1959年エドガー・ダイクストラによって考案された。 応用範囲は広くOSPFなどのインターネットルーティングプロトコルや、カーナビの経路探索や鉄道の経路案内においても利用されている。 ほかのアルゴリズムとして、 最短経路長の推定値を事前に知っているときは、ダイクストラ法の改良版であるA*アルゴリズムを用いて、より効率的に最短経路を求めることができる。 辺の重みが全て同一の非負数の場合は幅優先探索がより速く、線形時間で最短路を計算可能である。 無向グラフで辺の重みが正整数の場合は、Thorupのアルゴリズム[1]によって線形時間での計算が可能

    ダイクストラ法 - Wikipedia
  • 1