タグ

integerとalgorithmに関するnabinnoのブックマーク (2)

  • 回文数 - Wikipedia

    回文数(かいぶんすう、Palindromic number)とは、なんらかの位取り記数法(N進法)で数を記した際、たとえば十進法において14641のように逆から数字を並べても同じ数になる数である。同様の言葉遊びである回文にちなむ名前である。具体的には 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191,…(オンライン整数列大辞典の数列 A002113) である。 回文数は、趣味数学の分野ではよく研究の対象になる。代表的なものとしては、ある性質を持った回文数を求めることがある。以下のようなものがよく知られている。 回文素数 2, 3, 5, 7, 11, 101, 131, 151, … 回文平方数[1] 0, 1

  • 端数処理 - Wikipedia

    丸めは任意の丸め幅に対し可能だが、以下では特に断らない限り、丸め幅を1とする(後段の「#例」では、丸め幅は0.1である)。任意の丸め幅で丸めるには、丸める前に丸め幅で割り、丸めた後に丸め幅をかける。 主に正数について述べるが、負数についても適宜述べる。 整数部分をそのまま残し、小数点以下を0とする丸めを「切り捨て」という。それに対し、小数点以下が0でなかった場合整数部分を1増やし、小数点以下を0とする丸めを「切り上げ」という。 負の数を考えると、「切り捨て」「切り上げ」に準ずる丸めは、4種類ある。それぞれ「○○への丸め」と呼ばれる。 符号を無視して絶対値を丸める場合、「切り捨て」は常に0へ近づく(または変わらない。以下では省略)ので「0への丸め (rounding toward zero; RZ)」、「切り上げ」は常に数直線上の無限遠点へ近づくので「無限大への丸め (rounding to

    端数処理 - Wikipedia
  • 1