タグ

lambda-calculusとhaskellに関するnabinnoのブックマーク (2)

  • カリー化 - Wikipedia

    カリー化 (currying, カリー化された=curried) とは、複数の引数をとる関数を、引数が「もとの関数の最初の引数」で戻り値が「もとの関数の残りの引数を取り結果を返す関数」であるような関数にすること(あるいはその関数のこと)である。クリストファー・ストレイチーにより論理学者ハスケル・カリーにちなんで名付けられたが、実際に考案したのはMoses Schönfinkelとゴットロープ・フレーゲである。 ごく簡単な例として、f(a, b) = c という関数 f があるときに、F(a) = g(ここで、g は g(b) = c となる関数である)という関数 F が、f のカリー化である。 関数 f が の形のとき、 をカリー化したものを とすると、 の形を取る。uncurryingは、これの逆の変換である。 理論計算機科学の分野では、カリー化を利用すると、複数の引数をとる関数を、一つ

  • ラムダ計算 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2020年5月) ラムダ計算(ラムダけいさん、英語: lambda calculus)は、計算模型のひとつで、計算の実行を関数への引数の評価(英語: evaluation)と適用(英語: application)としてモデル化・抽象化した計算体系である。ラムダ算法とも言う。関数を表現する式に文字ラムダ (λ) を使うという慣習からその名がある。アロンゾ・チャーチとスティーヴン・コール・クリーネによって1930年代に考案された。1936年にチャーチはラムダ計算を用いて一階述語論理の決定可能性問題を(否定的に)解いた。ラムダ計算は「計算可能な関数」とはなにかを定義するために用いられることもある。計算の意味論や型理論

  • 1