最近は生成AIも一通り新発表ラッシュが終わり、ChatGPTが登場した直後の「熱狂」は一通り収まってきたように感じる。 おそらく現在は 「ちょっと触ってみて、すごいと思ったけど、あまり実用性を感じられなくて、今はたまに使うくらい」 という人が多いのではないかと思う。 いわゆる「失望の谷」に入った状態だ。 なぜ生成AIは「失望の谷」に入ったのか。 その原因は明らかで、生成AIを使って、自分が狙っているクオリティの成果品を出すのが難しいし、プロンプトを考えるのが面倒からだ。 例えば、こんな状況を想像してほしい。 朝出勤してきて、最初に 「昨日一緒に飲みに行った、お客さんの部長さんに「お礼」のメールを書きたい」 とする。 多くの方が想像する通り、お礼のメールは結構書くのが面倒だ。 そこで、「生成AIを使ってみよう」と、次のようなプロンプトをChatGPTに打ち込むとどうなるか。 昨日一緒に飲みに
各種Prompt Engineeringの日本語実例集(Zero-CoT、mock、ReAct、ToT、Metacog、Step Back、IEPなど)Python機械学習入門ChatGPTLLM CoT、Zero-CoT、ToT、mock、ReAct、Step Back、Metacog、IEPなど、各種Prompt Engineering手法の概説と、日本語での実際のプロンプト例をまとめた記事です。 各種Prompt Engineering手法を日本語で実装したい方向けの記事となります。 本記事で取り扱う手法は以下の通りです。 項目数が多いため、記事右下の目次リンクもご活用ください。 本記事の内容 01: 通常のPrompt 02: Few-shot Learning 03: CoT(Chain of Thought) 04: 出力形式の指定方法 05: Zero-shot CoT(≒
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く