numpy.ravel# numpy.ravel(a, order='C')[source]# Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed. As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array will be returned for a masked array input) Parameters: aarray_likeInput array. The elements in a are read in t
numpy.corrcoef# numpy.corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>, *, dtype=None)[source]# Return Pearson product-moment correlation coefficients. Please refer to the documentation for cov for more detail. The relationship between the correlation coefficient matrix, R, and the covariance matrix, C, is The values of R are between -1 and 1, inclusive. Parameters: xarray_likeA 1
3.3. Scikit-image: 画像処理¶ 著者: Emmanuelle Gouillart scikit-image は画像処理に特化した Python 画像ライブラリで、 NumPy 配列を画像オブジェクトをネイティブに扱います。この章では scikit-image を多様な画像処理タスクにどう利用するかや NumPy や Scipy などの他の Python の科学技術モジュールとの連携についても扱います。 参考 基本的な画像操作、たとえば画像の切り抜きや単純なフィルタリングなど、多くの単純な操作は NumPy や SciPy でも実現できます Numpy と Scipy を利用した画像の操作と処理 を参照して下さい。 この章を読む前に前の章の内容について慣れておく必要があります、マスクやラベルといった基本操作は準備として必要です。
Whether you want to build data science/machine learning models, deploy your work to production, or securely manage a team of engineers, Anaconda provides the tools necessary to succeed. This documentation is designed to aid in building your understanding of Anaconda software and assist with any operations you may need to perform to manage your organization’s users and resources.
From 2014 to 2021, Kite was a startup using AI to help developers write code. We have stopped working on Kite, and are no longer supporting the Kite software. Thank you to everyone who used our product, and thank you to our team members and investors who made this journey possible. Our journey at Kite While we built next-generation experiences for developers, our business failed in two important w
Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals Array creation Indexing on ndarrays I/O with NumPy Data types Broadcasting Copies and views Working with Arrays of Strings And Bytes Structured arrays Universal functions (ufunc) basics NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage an
numpy.loadtxt# numpy.loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding=None, max_rows=None, *, quotechar=None, like=None)[source]# Load data from a text file. Parameters: fnamefile, str, pathlib.Path, list of str, generatorFile, filename, list, or generator to read. If the filename extension is .gz or .bz2
numpy.logical_or# numpy.logical_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'logical_or'># Compute the truth value of x1 OR x2 element-wise. Parameters: x1, x2array_likeLogical OR is applied to the elements of x1 and x2. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the outp
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く